Fengyu Wang, Sen Tong, Xuan Ma, Huan Yang, Tianbao Zhang, Kunrong Wu, Junzi Wu
{"title":"镍纳米颗粒:癌症靶向递送和多模式治疗的新平台。","authors":"Fengyu Wang, Sen Tong, Xuan Ma, Huan Yang, Tianbao Zhang, Kunrong Wu, Junzi Wu","doi":"10.3389/fddev.2025.1627556","DOIUrl":null,"url":null,"abstract":"<p><p>Traditional cancer treatment methods often encounter limitations, such as poor targeting, low bioavailability, and high systemic toxicity. These challenges have led researchers to explore alternative therapeutic strategies. Nickel nanoparticles (NiNPs), owing to their distinctive physicochemical properties and tunable biocompatibility, have attracted considerable attention in cancer therapy and drug delivery applications. These nanomaterials demonstrate excellent magnetic properties, photothermal conversion capabilities, catalytic activity, and potential for multifunctionality and targeted drug delivery via surface modification. This review highlights recent advancements in the use of NiNPs for cancer treatment, emphasizing their advantages as drug carriers that enhance the bioavailability, targeting, and therapeutic efficacy of anticancer agents. Additionally, the synergistic applications of NiNPs in multimodal therapies, including magnetic hyperthermia, photothermal therapy, and chemodynamic therapy, are discussed, as well as their potential as theranostic platforms. Although nickel-based nanodelivery systems show significant promise for clinical translation, issues related to biosafety, degradation metabolism, and long-term toxicity remain and require further investigation to support their clinical application.</p>","PeriodicalId":73079,"journal":{"name":"Frontiers in drug delivery","volume":"5 ","pages":"1627556"},"PeriodicalIF":0.0000,"publicationDate":"2025-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12360441/pdf/","citationCount":"0","resultStr":"{\"title\":\"Nickel nanoparticles: a novel platform for cancer-targeted delivery and multimodal therapy.\",\"authors\":\"Fengyu Wang, Sen Tong, Xuan Ma, Huan Yang, Tianbao Zhang, Kunrong Wu, Junzi Wu\",\"doi\":\"10.3389/fddev.2025.1627556\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Traditional cancer treatment methods often encounter limitations, such as poor targeting, low bioavailability, and high systemic toxicity. These challenges have led researchers to explore alternative therapeutic strategies. Nickel nanoparticles (NiNPs), owing to their distinctive physicochemical properties and tunable biocompatibility, have attracted considerable attention in cancer therapy and drug delivery applications. These nanomaterials demonstrate excellent magnetic properties, photothermal conversion capabilities, catalytic activity, and potential for multifunctionality and targeted drug delivery via surface modification. This review highlights recent advancements in the use of NiNPs for cancer treatment, emphasizing their advantages as drug carriers that enhance the bioavailability, targeting, and therapeutic efficacy of anticancer agents. Additionally, the synergistic applications of NiNPs in multimodal therapies, including magnetic hyperthermia, photothermal therapy, and chemodynamic therapy, are discussed, as well as their potential as theranostic platforms. Although nickel-based nanodelivery systems show significant promise for clinical translation, issues related to biosafety, degradation metabolism, and long-term toxicity remain and require further investigation to support their clinical application.</p>\",\"PeriodicalId\":73079,\"journal\":{\"name\":\"Frontiers in drug delivery\",\"volume\":\"5 \",\"pages\":\"1627556\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12360441/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in drug delivery\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3389/fddev.2025.1627556\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in drug delivery","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/fddev.2025.1627556","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
Nickel nanoparticles: a novel platform for cancer-targeted delivery and multimodal therapy.
Traditional cancer treatment methods often encounter limitations, such as poor targeting, low bioavailability, and high systemic toxicity. These challenges have led researchers to explore alternative therapeutic strategies. Nickel nanoparticles (NiNPs), owing to their distinctive physicochemical properties and tunable biocompatibility, have attracted considerable attention in cancer therapy and drug delivery applications. These nanomaterials demonstrate excellent magnetic properties, photothermal conversion capabilities, catalytic activity, and potential for multifunctionality and targeted drug delivery via surface modification. This review highlights recent advancements in the use of NiNPs for cancer treatment, emphasizing their advantages as drug carriers that enhance the bioavailability, targeting, and therapeutic efficacy of anticancer agents. Additionally, the synergistic applications of NiNPs in multimodal therapies, including magnetic hyperthermia, photothermal therapy, and chemodynamic therapy, are discussed, as well as their potential as theranostic platforms. Although nickel-based nanodelivery systems show significant promise for clinical translation, issues related to biosafety, degradation metabolism, and long-term toxicity remain and require further investigation to support their clinical application.