炎热和干燥的条件提高草花粉和亚花粉颗粒浓度在墨尔本,澳大利亚。

IF 3.5 Q3 ENVIRONMENTAL SCIENCES
C. B. A. Mampage, K. M. Emmerson, E. R. Lampugnani, R. Schofield and E. A. Stone
{"title":"炎热和干燥的条件提高草花粉和亚花粉颗粒浓度在墨尔本,澳大利亚。","authors":"C. B. A. Mampage, K. M. Emmerson, E. R. Lampugnani, R. Schofield and E. A. Stone","doi":"10.1039/D5EA00024F","DOIUrl":null,"url":null,"abstract":"<p >A Wideband Integrated Bioaerosol Sensor (WIBS) was used in conjunction with chemical tracer analysis for the first time during the 2022–2023 grass pollen season in Melbourne, Australia. WIBS detected continuous levels of bioaerosol throughout the campaign. From 18th November to 7th December 2022, fluorescent particles accounted for an average of 10% of total particles in number, corresponding to an estimated 0.18 μg m<small><sup>−3</sup></small> PM<small><sub>2.5</sub></small> (14%) and 0.49 μg m<small><sup>−3</sup></small> PM<small><sub>10</sub></small> (25%). Using mannitol as a chemical tracer, fungal spores were estimated to contribute to an average of 2% of PM<small><sub>2.5</sub></small> and 9% of PM<small><sub>10</sub></small> mass. Analysis of fructose in PM<small><sub>2.5</sub></small> as a marker for sub-pollen particles (SPPs) showed elevated concentrations during periods of hot and dry weather. There was negligible fructose observed with rain, suggesting that SPP production is not limited to water absorption processes or high relative humidity in Melbourne. Estimates of SPP mass <em>via</em> fructose corresponded to the equivalent of 1.1 m<small><sup>−3</sup></small> intact pollen grains on average, 2% of the total pollen concentration, 7% of PM<small><sub>2.5</sub></small> fluorescent particle mass, and 1% of PM<small><sub>2.5</sub></small> mass. New hourly measured grass pollen data confirmed the timing and magnitude of grass pollen emissions in the Victorian Grass Pollen Emission Model (VGPEM) and captured the strong diurnal variation. Five grass pollen rupturing mechanisms using different meteorological drivers were tested against the WIBS and fructose measurements. Whilst the WIBS and model were not well correlated, likely due to the complex mixture of bioaerosols and low relative abundance of SPPs, the mechanical wind speed rupturing mechanism represented the fructose time series well. Conceptually, this suggests that mechanical rupturing describes SPP formation during hot and dry conditions in Melbourne. Long-term measurements in Melbourne will improve SPP formation process forecasting.</p>","PeriodicalId":72942,"journal":{"name":"Environmental science: atmospheres","volume":" 10","pages":" 1081-1098"},"PeriodicalIF":3.5000,"publicationDate":"2025-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12396348/pdf/","citationCount":"0","resultStr":"{\"title\":\"Hot and dry conditions elevate grass pollen and sub-pollen particle concentrations in Melbourne, Australia\",\"authors\":\"C. B. A. Mampage, K. M. Emmerson, E. R. Lampugnani, R. Schofield and E. A. Stone\",\"doi\":\"10.1039/D5EA00024F\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >A Wideband Integrated Bioaerosol Sensor (WIBS) was used in conjunction with chemical tracer analysis for the first time during the 2022–2023 grass pollen season in Melbourne, Australia. WIBS detected continuous levels of bioaerosol throughout the campaign. From 18th November to 7th December 2022, fluorescent particles accounted for an average of 10% of total particles in number, corresponding to an estimated 0.18 μg m<small><sup>−3</sup></small> PM<small><sub>2.5</sub></small> (14%) and 0.49 μg m<small><sup>−3</sup></small> PM<small><sub>10</sub></small> (25%). Using mannitol as a chemical tracer, fungal spores were estimated to contribute to an average of 2% of PM<small><sub>2.5</sub></small> and 9% of PM<small><sub>10</sub></small> mass. Analysis of fructose in PM<small><sub>2.5</sub></small> as a marker for sub-pollen particles (SPPs) showed elevated concentrations during periods of hot and dry weather. There was negligible fructose observed with rain, suggesting that SPP production is not limited to water absorption processes or high relative humidity in Melbourne. Estimates of SPP mass <em>via</em> fructose corresponded to the equivalent of 1.1 m<small><sup>−3</sup></small> intact pollen grains on average, 2% of the total pollen concentration, 7% of PM<small><sub>2.5</sub></small> fluorescent particle mass, and 1% of PM<small><sub>2.5</sub></small> mass. New hourly measured grass pollen data confirmed the timing and magnitude of grass pollen emissions in the Victorian Grass Pollen Emission Model (VGPEM) and captured the strong diurnal variation. Five grass pollen rupturing mechanisms using different meteorological drivers were tested against the WIBS and fructose measurements. Whilst the WIBS and model were not well correlated, likely due to the complex mixture of bioaerosols and low relative abundance of SPPs, the mechanical wind speed rupturing mechanism represented the fructose time series well. Conceptually, this suggests that mechanical rupturing describes SPP formation during hot and dry conditions in Melbourne. Long-term measurements in Melbourne will improve SPP formation process forecasting.</p>\",\"PeriodicalId\":72942,\"journal\":{\"name\":\"Environmental science: atmospheres\",\"volume\":\" 10\",\"pages\":\" 1081-1098\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12396348/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental science: atmospheres\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/ea/d5ea00024f\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental science: atmospheres","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/ea/d5ea00024f","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

在澳大利亚墨尔本2022-2023年草花粉季节,首次将宽带集成生物气溶胶传感器(WIBS)与化学示踪剂分析相结合。WIBS在整个运动过程中检测到持续水平的生物气溶胶。从2022年11月18日至12月7日,荧光粒子平均占总粒子数的10%,对应于估计0.18 μg m-3 PM2.5(14%)和0.49 μg m-3 PM10(25%)。使用甘露醇作为化学示踪剂,估计真菌孢子平均贡献了2%的PM2.5和9%的PM10质量。对PM2.5中果糖作为亚花粉颗粒(SPPs)标记物的分析显示,在炎热和干燥的天气期间,果糖的浓度会升高。雨水中观察到的果糖可以忽略不计,这表明SPP的生产并不局限于吸水过程或墨尔本的高相对湿度。通过果糖估算的SPP质量平均相当于1.1 m-3个完整花粉粒,花粉总浓度的2%,PM2.5荧光粒子质量的7%,PM2.5质量的1%。新的逐小时测量的草花粉数据证实了维多利亚草花粉排放模型(VGPEM)中草花粉排放的时间和强度,并捕获了强烈的日变化。利用不同气象因素对5种草花粉破裂机制进行了WIBS和果糖测定。虽然WIBS和模型没有很好地相关,可能是由于生物气溶胶的复杂混合物和SPPs的相对丰度较低,但机械风速破裂机制很好地代表了果糖时间序列。从概念上讲,这表明机械破裂描述了墨尔本炎热干燥条件下SPP的形成。墨尔本的长期测量将改善SPP地层过程预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Hot and dry conditions elevate grass pollen and sub-pollen particle concentrations in Melbourne, Australia

Hot and dry conditions elevate grass pollen and sub-pollen particle concentrations in Melbourne, Australia

A Wideband Integrated Bioaerosol Sensor (WIBS) was used in conjunction with chemical tracer analysis for the first time during the 2022–2023 grass pollen season in Melbourne, Australia. WIBS detected continuous levels of bioaerosol throughout the campaign. From 18th November to 7th December 2022, fluorescent particles accounted for an average of 10% of total particles in number, corresponding to an estimated 0.18 μg m−3 PM2.5 (14%) and 0.49 μg m−3 PM10 (25%). Using mannitol as a chemical tracer, fungal spores were estimated to contribute to an average of 2% of PM2.5 and 9% of PM10 mass. Analysis of fructose in PM2.5 as a marker for sub-pollen particles (SPPs) showed elevated concentrations during periods of hot and dry weather. There was negligible fructose observed with rain, suggesting that SPP production is not limited to water absorption processes or high relative humidity in Melbourne. Estimates of SPP mass via fructose corresponded to the equivalent of 1.1 m−3 intact pollen grains on average, 2% of the total pollen concentration, 7% of PM2.5 fluorescent particle mass, and 1% of PM2.5 mass. New hourly measured grass pollen data confirmed the timing and magnitude of grass pollen emissions in the Victorian Grass Pollen Emission Model (VGPEM) and captured the strong diurnal variation. Five grass pollen rupturing mechanisms using different meteorological drivers were tested against the WIBS and fructose measurements. Whilst the WIBS and model were not well correlated, likely due to the complex mixture of bioaerosols and low relative abundance of SPPs, the mechanical wind speed rupturing mechanism represented the fructose time series well. Conceptually, this suggests that mechanical rupturing describes SPP formation during hot and dry conditions in Melbourne. Long-term measurements in Melbourne will improve SPP formation process forecasting.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.90
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信