{"title":"机器人液体搬运优化作为一个有能力车辆路径问题。","authors":"Guangqi Wu, Runzhong Wang and Connor. W. Coley","doi":"10.1039/D5DD00233H","DOIUrl":null,"url":null,"abstract":"<p >We present an optimization strategy to reduce the execution time of liquid handling operations in the context of an automated chemical laboratory. By formulating the task as a capacitated vehicle routing problem (CVRP), we leverage heuristic solvers traditionally used in logistics and transportation planning to optimize task execution times. As exemplified using an 8-channel pipette with individually controllable tips, our approach demonstrates robust optimization performance across different labware formats (<em>e.g.</em>, well-plates, vial holders), achieving up to a 37% reduction in execution time for randomly generated tasks compared to the baseline sorting method. We further apply the method to a real-world high-throughput materials discovery campaign and observe that 3 minutes of optimization time led to a reduction of 61 minutes in execution time compared to the best-performing sorting-based strategy. Our results highlight the potential for substantial improvements in throughput and efficiency in automated laboratories without any hardware modifications. This optimization strategy offers a practical and scalable solution to accelerate combinatorial experimentation in areas such as drug combination screening, reaction condition optimization, materials development, and formulation engineering.</p>","PeriodicalId":72816,"journal":{"name":"Digital discovery","volume":" 9","pages":" 2593-2601"},"PeriodicalIF":6.2000,"publicationDate":"2025-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12360158/pdf/","citationCount":"0","resultStr":"{\"title\":\"Optimization of robotic liquid handling as a capacitated vehicle routing problem\",\"authors\":\"Guangqi Wu, Runzhong Wang and Connor. W. Coley\",\"doi\":\"10.1039/D5DD00233H\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >We present an optimization strategy to reduce the execution time of liquid handling operations in the context of an automated chemical laboratory. By formulating the task as a capacitated vehicle routing problem (CVRP), we leverage heuristic solvers traditionally used in logistics and transportation planning to optimize task execution times. As exemplified using an 8-channel pipette with individually controllable tips, our approach demonstrates robust optimization performance across different labware formats (<em>e.g.</em>, well-plates, vial holders), achieving up to a 37% reduction in execution time for randomly generated tasks compared to the baseline sorting method. We further apply the method to a real-world high-throughput materials discovery campaign and observe that 3 minutes of optimization time led to a reduction of 61 minutes in execution time compared to the best-performing sorting-based strategy. Our results highlight the potential for substantial improvements in throughput and efficiency in automated laboratories without any hardware modifications. This optimization strategy offers a practical and scalable solution to accelerate combinatorial experimentation in areas such as drug combination screening, reaction condition optimization, materials development, and formulation engineering.</p>\",\"PeriodicalId\":72816,\"journal\":{\"name\":\"Digital discovery\",\"volume\":\" 9\",\"pages\":\" 2593-2601\"},\"PeriodicalIF\":6.2000,\"publicationDate\":\"2025-08-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12360158/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Digital discovery\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/dd/d5dd00233h\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digital discovery","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/dd/d5dd00233h","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Optimization of robotic liquid handling as a capacitated vehicle routing problem
We present an optimization strategy to reduce the execution time of liquid handling operations in the context of an automated chemical laboratory. By formulating the task as a capacitated vehicle routing problem (CVRP), we leverage heuristic solvers traditionally used in logistics and transportation planning to optimize task execution times. As exemplified using an 8-channel pipette with individually controllable tips, our approach demonstrates robust optimization performance across different labware formats (e.g., well-plates, vial holders), achieving up to a 37% reduction in execution time for randomly generated tasks compared to the baseline sorting method. We further apply the method to a real-world high-throughput materials discovery campaign and observe that 3 minutes of optimization time led to a reduction of 61 minutes in execution time compared to the best-performing sorting-based strategy. Our results highlight the potential for substantial improvements in throughput and efficiency in automated laboratories without any hardware modifications. This optimization strategy offers a practical and scalable solution to accelerate combinatorial experimentation in areas such as drug combination screening, reaction condition optimization, materials development, and formulation engineering.