{"title":"蛋白质氨基甲酰化和蛋白质组学:从人工制品到生物功能的阐明。","authors":"Youngki You, Gina Many, Ernesto S Nakayasu","doi":"10.3389/frans.2024.1512573","DOIUrl":null,"url":null,"abstract":"<p><p>Lysine carbamylation is a non-enzymatic protein post-translational modification (PTM) that plays important roles in regulating enzymatic activity and the pathogenesis of diseases such as atherosclerosis, rheumatoid arthritis, and uremia. The progress of understanding the roles of carbamylation in biological systems has been delayed due to lack of systematic assays to study its functions. To aggravate this scenario, carbamylation is a major artifact in proteomics analysis given that urea, which is used during sample preparation induces carbamylation. In addition, anti-acetyllysine antibodies co-purify carbamylated and acetylated peptides. In a recent paper, we leveraged co-purification with anti-acetyllysine antibodies to develop a method for analyzing carbamylated proteomes. In this perspective article, we discuss how this method may be applied to characterize the physiological functions of carbamylation in humans and other biological models, as well as the utility of establishing novel disease biomarkers.</p>","PeriodicalId":73063,"journal":{"name":"Frontiers in analytical science","volume":"4 ","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12373144/pdf/","citationCount":"0","resultStr":"{\"title\":\"Protein carbamylation and proteomics: from artifacts to elucidation of biological functions.\",\"authors\":\"Youngki You, Gina Many, Ernesto S Nakayasu\",\"doi\":\"10.3389/frans.2024.1512573\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Lysine carbamylation is a non-enzymatic protein post-translational modification (PTM) that plays important roles in regulating enzymatic activity and the pathogenesis of diseases such as atherosclerosis, rheumatoid arthritis, and uremia. The progress of understanding the roles of carbamylation in biological systems has been delayed due to lack of systematic assays to study its functions. To aggravate this scenario, carbamylation is a major artifact in proteomics analysis given that urea, which is used during sample preparation induces carbamylation. In addition, anti-acetyllysine antibodies co-purify carbamylated and acetylated peptides. In a recent paper, we leveraged co-purification with anti-acetyllysine antibodies to develop a method for analyzing carbamylated proteomes. In this perspective article, we discuss how this method may be applied to characterize the physiological functions of carbamylation in humans and other biological models, as well as the utility of establishing novel disease biomarkers.</p>\",\"PeriodicalId\":73063,\"journal\":{\"name\":\"Frontiers in analytical science\",\"volume\":\"4 \",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12373144/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in analytical science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3389/frans.2024.1512573\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/2 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in analytical science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/frans.2024.1512573","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/2 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
Protein carbamylation and proteomics: from artifacts to elucidation of biological functions.
Lysine carbamylation is a non-enzymatic protein post-translational modification (PTM) that plays important roles in regulating enzymatic activity and the pathogenesis of diseases such as atherosclerosis, rheumatoid arthritis, and uremia. The progress of understanding the roles of carbamylation in biological systems has been delayed due to lack of systematic assays to study its functions. To aggravate this scenario, carbamylation is a major artifact in proteomics analysis given that urea, which is used during sample preparation induces carbamylation. In addition, anti-acetyllysine antibodies co-purify carbamylated and acetylated peptides. In a recent paper, we leveraged co-purification with anti-acetyllysine antibodies to develop a method for analyzing carbamylated proteomes. In this perspective article, we discuss how this method may be applied to characterize the physiological functions of carbamylation in humans and other biological models, as well as the utility of establishing novel disease biomarkers.