寻找有机太阳能电池供体分子的搜索方法的比较分析。

IF 6.2 Q1 CHEMISTRY, MULTIDISCIPLINARY
Mohammed Azzouzi, Steven Bennett, Victor Posligua, Roberto Bondesan, Martijn A. Zwijnenburg and Kim E. Jelfs
{"title":"寻找有机太阳能电池供体分子的搜索方法的比较分析。","authors":"Mohammed Azzouzi, Steven Bennett, Victor Posligua, Roberto Bondesan, Martijn A. Zwijnenburg and Kim E. Jelfs","doi":"10.1039/D4DD00355A","DOIUrl":null,"url":null,"abstract":"<p >Identifying organic molecules with desirable properties from the extensive chemical space can be challenging, particularly when property evaluation methods are time-consuming and resource-intensive. In this study, we illustrate this challenge by exploring the chemical space of large oligomers, constructed from monomeric building blocks, for potential use in organic photovoltaics (OPV). For this purpose, we developed a python package to search the chemical space using a building block approach: <em>stk-search</em>. We use <em>stk-search</em> (GitHub link: STK_search) to compare a variety of search algorithms, including those based upon Bayesian optimisation and evolutionary approaches. Initially, we evaluated and compared the performance of different search algorithms within a precomputed search space. We then extended our investigation to the vast chemical space of molecules formed of 6 building blocks (6-mers), comprising over 10<small><sup>14</sup></small> molecules. Notably, while some algorithms show only marginal improvements over a random search approach in a relatively small, precomputed, search space, their performance in the larger chemical space is orders of magnitude better. Specifically, Bayesianoptimisation identified a thousand times more promising molecules with the desired properties compared to random search, using the same computational resources.</p>","PeriodicalId":72816,"journal":{"name":"Digital discovery","volume":" 10","pages":" 2781-2796"},"PeriodicalIF":6.2000,"publicationDate":"2025-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12379869/pdf/","citationCount":"0","resultStr":"{\"title\":\"Comparative analysis of search approaches to discover donor molecules for organic solar cells\",\"authors\":\"Mohammed Azzouzi, Steven Bennett, Victor Posligua, Roberto Bondesan, Martijn A. Zwijnenburg and Kim E. Jelfs\",\"doi\":\"10.1039/D4DD00355A\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Identifying organic molecules with desirable properties from the extensive chemical space can be challenging, particularly when property evaluation methods are time-consuming and resource-intensive. In this study, we illustrate this challenge by exploring the chemical space of large oligomers, constructed from monomeric building blocks, for potential use in organic photovoltaics (OPV). For this purpose, we developed a python package to search the chemical space using a building block approach: <em>stk-search</em>. We use <em>stk-search</em> (GitHub link: STK_search) to compare a variety of search algorithms, including those based upon Bayesian optimisation and evolutionary approaches. Initially, we evaluated and compared the performance of different search algorithms within a precomputed search space. We then extended our investigation to the vast chemical space of molecules formed of 6 building blocks (6-mers), comprising over 10<small><sup>14</sup></small> molecules. Notably, while some algorithms show only marginal improvements over a random search approach in a relatively small, precomputed, search space, their performance in the larger chemical space is orders of magnitude better. Specifically, Bayesianoptimisation identified a thousand times more promising molecules with the desired properties compared to random search, using the same computational resources.</p>\",\"PeriodicalId\":72816,\"journal\":{\"name\":\"Digital discovery\",\"volume\":\" 10\",\"pages\":\" 2781-2796\"},\"PeriodicalIF\":6.2000,\"publicationDate\":\"2025-08-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12379869/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Digital discovery\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/dd/d4dd00355a\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digital discovery","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/dd/d4dd00355a","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

从广泛的化学空间中识别具有理想性质的有机分子可能具有挑战性,特别是当性质评估方法耗时且资源密集时。在这项研究中,我们通过探索大型低聚物的化学空间来说明这一挑战,这些低聚物由单体构建而成,可用于有机光伏(OPV)。为此,我们开发了一个python包来使用构建块方法(stack -search)搜索化学空间。我们使用stk-search (GitHub链接:STK_search)来比较各种搜索算法,包括基于贝叶斯优化和进化方法的搜索算法。首先,我们在预先计算的搜索空间中评估并比较了不同搜索算法的性能。然后,我们将研究扩展到由6个构建块(6-mers)组成的分子的巨大化学空间,包括超过1014个分子。值得注意的是,虽然一些算法在相对较小的预先计算的搜索空间中只显示出与随机搜索方法相比的边际改进,但它们在较大的化学空间中的性能要好几个数量级。具体来说,使用相同的计算资源,与随机搜索相比,贝叶斯优化识别出具有所需特性的有希望的分子要多一千倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Comparative analysis of search approaches to discover donor molecules for organic solar cells

Comparative analysis of search approaches to discover donor molecules for organic solar cells

Identifying organic molecules with desirable properties from the extensive chemical space can be challenging, particularly when property evaluation methods are time-consuming and resource-intensive. In this study, we illustrate this challenge by exploring the chemical space of large oligomers, constructed from monomeric building blocks, for potential use in organic photovoltaics (OPV). For this purpose, we developed a python package to search the chemical space using a building block approach: stk-search. We use stk-search (GitHub link: STK_search) to compare a variety of search algorithms, including those based upon Bayesian optimisation and evolutionary approaches. Initially, we evaluated and compared the performance of different search algorithms within a precomputed search space. We then extended our investigation to the vast chemical space of molecules formed of 6 building blocks (6-mers), comprising over 1014 molecules. Notably, while some algorithms show only marginal improvements over a random search approach in a relatively small, precomputed, search space, their performance in the larger chemical space is orders of magnitude better. Specifically, Bayesianoptimisation identified a thousand times more promising molecules with the desired properties compared to random search, using the same computational resources.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信