TEMPO积分器:通过时间多尺度力预测加速分子模拟。

IF 2.8 Q2 MATHEMATICAL & COMPUTATIONAL BIOLOGY
Bioinformatics advances Pub Date : 2025-06-20 eCollection Date: 2025-01-01 DOI:10.1093/bioadv/vbaf142
Reshef Mintz, Barak Raveh
{"title":"TEMPO积分器:通过时间多尺度力预测加速分子模拟。","authors":"Reshef Mintz, Barak Raveh","doi":"10.1093/bioadv/vbaf142","DOIUrl":null,"url":null,"abstract":"<p><strong>Motivation: </strong>Molecular dynamics (MD) simulations enable the study of complex biomolecular processes by integrating system forces over time, but their computational inefficiency limits application at relevant scales. Enhanced sampling methods often sacrifice kinetic detail and require prior knowledge of the energy landscape.</p><p><strong>Results: </strong>We developed the temporally multiscale prediction (TEMPO) Integrator, significantly reducing the number of force evaluations per simulated time unit by predicting forces at progressively larger intervals, thus boosting force-call efficiency. We incorporated the TEMPO integrator in a multiscale Brownian dynamics (MSBD) simulation tool. Compared with standard Brownian dynamics using the Euler-Maruyama integrator, our benchmarks of MSBD demonstrated 27- to 32-fold efficiency improvements for intrinsically disordered protein models and a seven-fold gain for nucleocytoplasmic transport through the nuclear pore complex (NPC), a critical cellular process in health and disease. Unlike conventional enhanced sampling, MSBD preserves kinetic properties, such as reaction rates, without relying on prior system knowledge or predefined reaction coordinates. By leveraging the inherently multiscale structure of energy landscapes, MSBD facilitates rapid molecular simulations while maintaining their accuracy. TEMPO's flexible framework is generalizable to various biomolecular systems and could complement existing enhanced sampling methods, facilitating efficient exploration of energy landscapes or complex dynamical processes.</p><p><strong>Availability and implementation: </strong>https://github.com/ravehlab/tempo.</p>","PeriodicalId":72368,"journal":{"name":"Bioinformatics advances","volume":"5 1","pages":"vbaf142"},"PeriodicalIF":2.8000,"publicationDate":"2025-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12377907/pdf/","citationCount":"0","resultStr":"{\"title\":\"The TEMPO integrator: accelerating molecular simulations by temporally multiscale force prediction.\",\"authors\":\"Reshef Mintz, Barak Raveh\",\"doi\":\"10.1093/bioadv/vbaf142\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Motivation: </strong>Molecular dynamics (MD) simulations enable the study of complex biomolecular processes by integrating system forces over time, but their computational inefficiency limits application at relevant scales. Enhanced sampling methods often sacrifice kinetic detail and require prior knowledge of the energy landscape.</p><p><strong>Results: </strong>We developed the temporally multiscale prediction (TEMPO) Integrator, significantly reducing the number of force evaluations per simulated time unit by predicting forces at progressively larger intervals, thus boosting force-call efficiency. We incorporated the TEMPO integrator in a multiscale Brownian dynamics (MSBD) simulation tool. Compared with standard Brownian dynamics using the Euler-Maruyama integrator, our benchmarks of MSBD demonstrated 27- to 32-fold efficiency improvements for intrinsically disordered protein models and a seven-fold gain for nucleocytoplasmic transport through the nuclear pore complex (NPC), a critical cellular process in health and disease. Unlike conventional enhanced sampling, MSBD preserves kinetic properties, such as reaction rates, without relying on prior system knowledge or predefined reaction coordinates. By leveraging the inherently multiscale structure of energy landscapes, MSBD facilitates rapid molecular simulations while maintaining their accuracy. TEMPO's flexible framework is generalizable to various biomolecular systems and could complement existing enhanced sampling methods, facilitating efficient exploration of energy landscapes or complex dynamical processes.</p><p><strong>Availability and implementation: </strong>https://github.com/ravehlab/tempo.</p>\",\"PeriodicalId\":72368,\"journal\":{\"name\":\"Bioinformatics advances\",\"volume\":\"5 1\",\"pages\":\"vbaf142\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12377907/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioinformatics advances\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/bioadv/vbaf142\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinformatics advances","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/bioadv/vbaf142","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

动机:分子动力学(MD)模拟可以通过整合系统力来研究复杂的生物分子过程,但其计算效率低下限制了在相关规模上的应用。增强的采样方法往往牺牲动力学细节,需要预先了解能量景观。结果:我们开发了时间多尺度预测(TEMPO)积分器,通过以逐渐增大的间隔预测力,显著减少了每个模拟时间单位的力评估次数,从而提高了力调用效率。我们将TEMPO积分器集成到多尺度布朗动力学(MSBD)模拟工具中。与使用Euler-Maruyama积分器的标准布朗动力学相比,我们的MSBD基准表明,内在无序蛋白模型的效率提高了27至32倍,核孔复合体(NPC)的核胞质运输效率提高了7倍,核孔复合体是健康和疾病的关键细胞过程。与传统的增强采样不同,MSBD保留了动力学性质,如反应速率,而不依赖于先前的系统知识或预定义的反应坐标。通过利用能量景观固有的多尺度结构,MSBD促进快速分子模拟,同时保持其准确性。TEMPO的灵活框架可推广到各种生物分子系统,并可补充现有的增强采样方法,促进对能量景观或复杂动态过程的有效探索。可用性和实现:https://github.com/ravehlab/tempo。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

The TEMPO integrator: accelerating molecular simulations by temporally multiscale force prediction.

The TEMPO integrator: accelerating molecular simulations by temporally multiscale force prediction.

The TEMPO integrator: accelerating molecular simulations by temporally multiscale force prediction.

The TEMPO integrator: accelerating molecular simulations by temporally multiscale force prediction.

Motivation: Molecular dynamics (MD) simulations enable the study of complex biomolecular processes by integrating system forces over time, but their computational inefficiency limits application at relevant scales. Enhanced sampling methods often sacrifice kinetic detail and require prior knowledge of the energy landscape.

Results: We developed the temporally multiscale prediction (TEMPO) Integrator, significantly reducing the number of force evaluations per simulated time unit by predicting forces at progressively larger intervals, thus boosting force-call efficiency. We incorporated the TEMPO integrator in a multiscale Brownian dynamics (MSBD) simulation tool. Compared with standard Brownian dynamics using the Euler-Maruyama integrator, our benchmarks of MSBD demonstrated 27- to 32-fold efficiency improvements for intrinsically disordered protein models and a seven-fold gain for nucleocytoplasmic transport through the nuclear pore complex (NPC), a critical cellular process in health and disease. Unlike conventional enhanced sampling, MSBD preserves kinetic properties, such as reaction rates, without relying on prior system knowledge or predefined reaction coordinates. By leveraging the inherently multiscale structure of energy landscapes, MSBD facilitates rapid molecular simulations while maintaining their accuracy. TEMPO's flexible framework is generalizable to various biomolecular systems and could complement existing enhanced sampling methods, facilitating efficient exploration of energy landscapes or complex dynamical processes.

Availability and implementation: https://github.com/ravehlab/tempo.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信