使用大规模分层聚类的表观基因组统计关系。

IF 2.8 Q2 MATHEMATICAL & COMPUTATIONAL BIOLOGY
Bioinformatics advances Pub Date : 2025-07-23 eCollection Date: 2025-01-01 DOI:10.1093/bioadv/vbaf175
Anastasiia Kim, Nicholas Lubbers, Christina R Steadman, Karissa Y Sanbonmatsu
{"title":"使用大规模分层聚类的表观基因组统计关系。","authors":"Anastasiia Kim, Nicholas Lubbers, Christina R Steadman, Karissa Y Sanbonmatsu","doi":"10.1093/bioadv/vbaf175","DOIUrl":null,"url":null,"abstract":"<p><strong>Motivation: </strong>Recent advances in genomics and sequencing platforms have revolutionized our ability to create immense data sets, particularly for studying epigenetic regulation of gene expression. However, the avalanche of epigenomic data is difficult to parse for biological interpretation given nonlinear complex patterns and relationships. This attractive challenge in epigenomic data lends itself to machine learning for discerning infectivity and susceptibility. In this study, we explore over 3000 epigenomes of uninfected individuals and provide a framework to characterize the relationships among epigenetic modifiers, their modifiers, genetic loci, and specific immune cell types across all chromosomes using hierarchical clustering.</p><p><strong>Results: </strong>Hierarchical clustering of epigenomic data revealed consistent epigenetic patterns across chromosomes, demonstrating that variation due to epigenetic modifiers is greater than variation between cell types. Gene Ontology and KEGG pathway analyses indicated significant enrichment of genes involved in chromatin remodeling, mRNA splicing, immune responses, and the regulation of microRNAs and snoRNAs. Epigenetic modifiers frequently formed biologically relevant clusters, including the cohesin complex, RNA Polymerase II transcription factors, and PRC2 complex members. These clustering behaviors remained consistent across all chromosomes, supported by entropy analysis and high Adjusted Rand Index scores, indicating robust cross-chromosomal similarity. Co-occurrence analysis further revealed specific sets of modifiers that consistently appeared together within clusters, reflecting shared biological functions and interactions. Validation using another dataset confirmed the reproducibility of these clustering patterns and modifier co-occurrence relationships, underscoring the reliability and generalizability of the methodology.</p><p><strong>Availability and implementation: </strong>The analysis pipeline for this study is freely available online at the GitHub repository: https://github.com/lanl/epigen.</p>","PeriodicalId":72368,"journal":{"name":"Bioinformatics advances","volume":"5 1","pages":"vbaf175"},"PeriodicalIF":2.8000,"publicationDate":"2025-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12373635/pdf/","citationCount":"0","resultStr":"{\"title\":\"Statistical relationships across epigenomes using large-scale hierarchical clustering.\",\"authors\":\"Anastasiia Kim, Nicholas Lubbers, Christina R Steadman, Karissa Y Sanbonmatsu\",\"doi\":\"10.1093/bioadv/vbaf175\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Motivation: </strong>Recent advances in genomics and sequencing platforms have revolutionized our ability to create immense data sets, particularly for studying epigenetic regulation of gene expression. However, the avalanche of epigenomic data is difficult to parse for biological interpretation given nonlinear complex patterns and relationships. This attractive challenge in epigenomic data lends itself to machine learning for discerning infectivity and susceptibility. In this study, we explore over 3000 epigenomes of uninfected individuals and provide a framework to characterize the relationships among epigenetic modifiers, their modifiers, genetic loci, and specific immune cell types across all chromosomes using hierarchical clustering.</p><p><strong>Results: </strong>Hierarchical clustering of epigenomic data revealed consistent epigenetic patterns across chromosomes, demonstrating that variation due to epigenetic modifiers is greater than variation between cell types. Gene Ontology and KEGG pathway analyses indicated significant enrichment of genes involved in chromatin remodeling, mRNA splicing, immune responses, and the regulation of microRNAs and snoRNAs. Epigenetic modifiers frequently formed biologically relevant clusters, including the cohesin complex, RNA Polymerase II transcription factors, and PRC2 complex members. These clustering behaviors remained consistent across all chromosomes, supported by entropy analysis and high Adjusted Rand Index scores, indicating robust cross-chromosomal similarity. Co-occurrence analysis further revealed specific sets of modifiers that consistently appeared together within clusters, reflecting shared biological functions and interactions. Validation using another dataset confirmed the reproducibility of these clustering patterns and modifier co-occurrence relationships, underscoring the reliability and generalizability of the methodology.</p><p><strong>Availability and implementation: </strong>The analysis pipeline for this study is freely available online at the GitHub repository: https://github.com/lanl/epigen.</p>\",\"PeriodicalId\":72368,\"journal\":{\"name\":\"Bioinformatics advances\",\"volume\":\"5 1\",\"pages\":\"vbaf175\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12373635/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioinformatics advances\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/bioadv/vbaf175\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinformatics advances","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/bioadv/vbaf175","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

动机:基因组学和测序平台的最新进展彻底改变了我们创建庞大数据集的能力,特别是研究基因表达的表观遗传调控。然而,由于非线性的复杂模式和关系,大量的表观基因组数据很难解析为生物学解释。在表观基因组数据中,这一具有吸引力的挑战使机器学习能够识别感染性和易感性。在这项研究中,我们探索了3000多个未感染个体的表观基因组,并提供了一个框架,通过分层聚类来表征所有染色体上的表观遗传修饰子、修饰子、遗传位点和特定免疫细胞类型之间的关系。结果:表观基因组数据的分层聚类揭示了染色体间一致的表观遗传模式,表明表观遗传修饰因子引起的差异大于细胞类型之间的差异。基因本体和KEGG通路分析显示,参与染色质重塑、mRNA剪接、免疫应答以及microrna和snorna调控的基因显著富集。表观遗传修饰因子经常形成生物学相关的簇,包括内聚蛋白复合物、RNA聚合酶II转录因子和PRC2复合物成员。这些聚类行为在所有染色体上保持一致,得到熵分析和高调整后兰德指数分数的支持,表明强大的跨染色体相似性。共现分析进一步揭示了在聚类中一致出现的特定修饰语集,反映了共同的生物功能和相互作用。使用另一个数据集进行验证,证实了这些聚类模式和修饰符共现关系的可重复性,强调了该方法的可靠性和普遍性。可用性和实现:本研究的分析管道可以在GitHub存储库中免费在线获得:https://github.com/lanl/epigen。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Statistical relationships across epigenomes using large-scale hierarchical clustering.

Motivation: Recent advances in genomics and sequencing platforms have revolutionized our ability to create immense data sets, particularly for studying epigenetic regulation of gene expression. However, the avalanche of epigenomic data is difficult to parse for biological interpretation given nonlinear complex patterns and relationships. This attractive challenge in epigenomic data lends itself to machine learning for discerning infectivity and susceptibility. In this study, we explore over 3000 epigenomes of uninfected individuals and provide a framework to characterize the relationships among epigenetic modifiers, their modifiers, genetic loci, and specific immune cell types across all chromosomes using hierarchical clustering.

Results: Hierarchical clustering of epigenomic data revealed consistent epigenetic patterns across chromosomes, demonstrating that variation due to epigenetic modifiers is greater than variation between cell types. Gene Ontology and KEGG pathway analyses indicated significant enrichment of genes involved in chromatin remodeling, mRNA splicing, immune responses, and the regulation of microRNAs and snoRNAs. Epigenetic modifiers frequently formed biologically relevant clusters, including the cohesin complex, RNA Polymerase II transcription factors, and PRC2 complex members. These clustering behaviors remained consistent across all chromosomes, supported by entropy analysis and high Adjusted Rand Index scores, indicating robust cross-chromosomal similarity. Co-occurrence analysis further revealed specific sets of modifiers that consistently appeared together within clusters, reflecting shared biological functions and interactions. Validation using another dataset confirmed the reproducibility of these clustering patterns and modifier co-occurrence relationships, underscoring the reliability and generalizability of the methodology.

Availability and implementation: The analysis pipeline for this study is freely available online at the GitHub repository: https://github.com/lanl/epigen.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信