一种用于评估移动医疗干预的鲁棒混合效应Bandit算法。

Easton K Huch, Jieru Shi, Madeline R Abbott, Jessica R Golbus, Alexander Moreno, Walter H Dempsey
{"title":"一种用于评估移动医疗干预的鲁棒混合效应Bandit算法。","authors":"Easton K Huch, Jieru Shi, Madeline R Abbott, Jessica R Golbus, Alexander Moreno, Walter H Dempsey","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Mobile health leverages personalized, contextually-tailored interventions optimized through bandit and reinforcement learning algorithms. Despite its promise, challenges like participant heterogeneity, nonstationarity, and nonlinearity in rewards hinder algorithm performance. We propose a robust contextual bandit algorithm, termed \"DML-TS-NNR\", that simultaneously addresses these challenges via (1) modeling the differential reward with user- and time-specific incidental parameters, (2) network cohesion penalties, and (3) debiased machine learning for flexible estimation of baseline rewards. We establish a high-probability regret bound that depends solely on the dimension of the differential reward model. This feature enables us to achieve robust regret bounds even when the baseline reward is highly complex. We demonstrate the superior performance of the DML-TS-NNR algorithm in a simulation and two off-policy evaluation studies.</p>","PeriodicalId":72099,"journal":{"name":"Advances in neural information processing systems","volume":"37 ","pages":"128280-128329"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12395203/pdf/","citationCount":"0","resultStr":"{\"title\":\"A Robust Mixed-Effects Bandit Algorithm for Assessing Mobile Health Interventions.\",\"authors\":\"Easton K Huch, Jieru Shi, Madeline R Abbott, Jessica R Golbus, Alexander Moreno, Walter H Dempsey\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Mobile health leverages personalized, contextually-tailored interventions optimized through bandit and reinforcement learning algorithms. Despite its promise, challenges like participant heterogeneity, nonstationarity, and nonlinearity in rewards hinder algorithm performance. We propose a robust contextual bandit algorithm, termed \\\"DML-TS-NNR\\\", that simultaneously addresses these challenges via (1) modeling the differential reward with user- and time-specific incidental parameters, (2) network cohesion penalties, and (3) debiased machine learning for flexible estimation of baseline rewards. We establish a high-probability regret bound that depends solely on the dimension of the differential reward model. This feature enables us to achieve robust regret bounds even when the baseline reward is highly complex. We demonstrate the superior performance of the DML-TS-NNR algorithm in a simulation and two off-policy evaluation studies.</p>\",\"PeriodicalId\":72099,\"journal\":{\"name\":\"Advances in neural information processing systems\",\"volume\":\"37 \",\"pages\":\"128280-128329\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12395203/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in neural information processing systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in neural information processing systems","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

移动医疗利用个性化的、根据具体情况定制的干预措施,通过强盗和强化学习算法进行优化。尽管其前景光明,但参与者异质性、非平稳性和奖励非线性等挑战阻碍了算法的性能。我们提出了一种鲁棒的上下文强盗算法,称为“DML-TS-NNR”,该算法通过(1)用用户和特定时间的附带参数对差异奖励建模,(2)网络内聚惩罚,以及(3)用于灵活估计基线奖励的去偏见机器学习,同时解决了这些挑战。我们建立了一个高概率后悔界,它只依赖于差异奖励模型的维度。这个特性使我们能够在基线奖励非常复杂的情况下实现强大的后悔界限。我们在一个模拟和两个非策略评估研究中证明了DML-TS-NNR算法的优越性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Robust Mixed-Effects Bandit Algorithm for Assessing Mobile Health Interventions.

Mobile health leverages personalized, contextually-tailored interventions optimized through bandit and reinforcement learning algorithms. Despite its promise, challenges like participant heterogeneity, nonstationarity, and nonlinearity in rewards hinder algorithm performance. We propose a robust contextual bandit algorithm, termed "DML-TS-NNR", that simultaneously addresses these challenges via (1) modeling the differential reward with user- and time-specific incidental parameters, (2) network cohesion penalties, and (3) debiased machine learning for flexible estimation of baseline rewards. We establish a high-probability regret bound that depends solely on the dimension of the differential reward model. This feature enables us to achieve robust regret bounds even when the baseline reward is highly complex. We demonstrate the superior performance of the DML-TS-NNR algorithm in a simulation and two off-policy evaluation studies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信