smartSim:模拟拼接感知的单细胞smart-seq3数据。

IF 2.8 Q2 MATHEMATICAL & COMPUTATIONAL BIOLOGY
Bioinformatics advances Pub Date : 2025-07-30 eCollection Date: 2025-01-01 DOI:10.1093/bioadv/vbaf183
Marie Van Hecke, Kathleen Marchal
{"title":"smartSim:模拟拼接感知的单细胞smart-seq3数据。","authors":"Marie Van Hecke, Kathleen Marchal","doi":"10.1093/bioadv/vbaf183","DOIUrl":null,"url":null,"abstract":"<p><strong>Motivation: </strong>Smart-seq3 is a powerful full-length single-cell RNA sequencing protocol that enables transcript-level quantification and splicing analysis by preserving unique molecular identifier (UMI) information. However, benchmarking computational tools for isoform reconstruction and splicing quantification remains challenging due to the lack of ground truth datasets. Herein, we present smartSim, a Smart-seq3 read simulator designed to generate realistic sequencing data that accurately reflects the complexities of single-cell transcriptomics.</p><p><strong>Results: </strong>smartSim simulates known and novel splicing events, generates both UMI-containing and internal reads, and mimics protocol-specific biases by leveraging empirical data distributions. Our results show that smartSim-generated data closely resembles real Smart-seq3 datasets in terms of fragment length distributions, internal read counts, and read quality scores. It generates raw sequencing reads in FASTQ format, making it compatible with both genome- and transcriptome-based alignment tools. By extending simulation beyond gene-level quantification, smartSim provides a crucial resource for evaluating and improving computational methods for alternative splicing detection and isoform reconstruction in single-cell RNA sequencing.</p><p><strong>Availability and implementation: </strong>smartSim is available at https://github.com/MarchalLab/smartSim.</p>","PeriodicalId":72368,"journal":{"name":"Bioinformatics advances","volume":"5 1","pages":"vbaf183"},"PeriodicalIF":2.8000,"publicationDate":"2025-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12373632/pdf/","citationCount":"0","resultStr":"{\"title\":\"smartSim: simulation of splice aware single cell smart-seq3 data.\",\"authors\":\"Marie Van Hecke, Kathleen Marchal\",\"doi\":\"10.1093/bioadv/vbaf183\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Motivation: </strong>Smart-seq3 is a powerful full-length single-cell RNA sequencing protocol that enables transcript-level quantification and splicing analysis by preserving unique molecular identifier (UMI) information. However, benchmarking computational tools for isoform reconstruction and splicing quantification remains challenging due to the lack of ground truth datasets. Herein, we present smartSim, a Smart-seq3 read simulator designed to generate realistic sequencing data that accurately reflects the complexities of single-cell transcriptomics.</p><p><strong>Results: </strong>smartSim simulates known and novel splicing events, generates both UMI-containing and internal reads, and mimics protocol-specific biases by leveraging empirical data distributions. Our results show that smartSim-generated data closely resembles real Smart-seq3 datasets in terms of fragment length distributions, internal read counts, and read quality scores. It generates raw sequencing reads in FASTQ format, making it compatible with both genome- and transcriptome-based alignment tools. By extending simulation beyond gene-level quantification, smartSim provides a crucial resource for evaluating and improving computational methods for alternative splicing detection and isoform reconstruction in single-cell RNA sequencing.</p><p><strong>Availability and implementation: </strong>smartSim is available at https://github.com/MarchalLab/smartSim.</p>\",\"PeriodicalId\":72368,\"journal\":{\"name\":\"Bioinformatics advances\",\"volume\":\"5 1\",\"pages\":\"vbaf183\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12373632/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioinformatics advances\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/bioadv/vbaf183\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinformatics advances","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/bioadv/vbaf183","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

动机:Smart-seq3是一种功能强大的全长单细胞RNA测序方案,通过保留独特的分子标识符(UMI)信息,实现转录水平的定量和剪接分析。然而,由于缺乏真实数据集,对异构体重建和拼接量化的基准计算工具仍然具有挑战性。在此,我们提出了smartSim,一个Smart-seq3读取模拟器,旨在生成真实的测序数据,准确反映单细胞转录组学的复杂性。结果:smartSim模拟已知的和新的拼接事件,生成包含umi和内部读取,并通过利用经验数据分布模拟协议特定的偏差。我们的研究结果表明,smartsim生成的数据在片段长度分布、内部读取计数和读取质量分数方面与真实的Smart-seq3数据集非常相似。它生成FASTQ格式的原始测序读数,使其与基于基因组和转录组的比对工具兼容。通过将模拟扩展到基因水平的定量,smartSim为评估和改进单细胞RNA测序中选择性剪接检测和异构体重建的计算方法提供了重要资源。可用性和实现:smartSim可在https://github.com/MarchalLab/smartSim上获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

smartSim: simulation of splice aware single cell smart-seq3 data.

smartSim: simulation of splice aware single cell smart-seq3 data.

smartSim: simulation of splice aware single cell smart-seq3 data.

smartSim: simulation of splice aware single cell smart-seq3 data.

Motivation: Smart-seq3 is a powerful full-length single-cell RNA sequencing protocol that enables transcript-level quantification and splicing analysis by preserving unique molecular identifier (UMI) information. However, benchmarking computational tools for isoform reconstruction and splicing quantification remains challenging due to the lack of ground truth datasets. Herein, we present smartSim, a Smart-seq3 read simulator designed to generate realistic sequencing data that accurately reflects the complexities of single-cell transcriptomics.

Results: smartSim simulates known and novel splicing events, generates both UMI-containing and internal reads, and mimics protocol-specific biases by leveraging empirical data distributions. Our results show that smartSim-generated data closely resembles real Smart-seq3 datasets in terms of fragment length distributions, internal read counts, and read quality scores. It generates raw sequencing reads in FASTQ format, making it compatible with both genome- and transcriptome-based alignment tools. By extending simulation beyond gene-level quantification, smartSim provides a crucial resource for evaluating and improving computational methods for alternative splicing detection and isoform reconstruction in single-cell RNA sequencing.

Availability and implementation: smartSim is available at https://github.com/MarchalLab/smartSim.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信