基于系统发育信息和元数据集成的时间序列肠道微生物组图谱的扩散模型。

IF 2.8 Q2 MATHEMATICAL & COMPUTATIONAL BIOLOGY
Bioinformatics advances Pub Date : 2025-07-28 eCollection Date: 2025-01-01 DOI:10.1093/bioadv/vbaf181
Misato Seki, Yao-Zhong Zhang, Seiya Imoto
{"title":"基于系统发育信息和元数据集成的时间序列肠道微生物组图谱的扩散模型。","authors":"Misato Seki, Yao-Zhong Zhang, Seiya Imoto","doi":"10.1093/bioadv/vbaf181","DOIUrl":null,"url":null,"abstract":"<p><strong>Motivation: </strong>The gut microbiota interacts closely with the host, playing crucial roles in maintaining health. Analysing time-series genomic data enables the investigation of dynamic microbiota changes. However, missing values create significant analytical challenges.</p><p><strong>Results: </strong>We propose a microbiome imputation framework based on a conditional score-based diffusion model, tailored to microbiome data by incorporating phylogenetic convolutional layers. Our method effectively reduces mean absolute error across various missing data ratios for both 16S rRNA and whole-genome shotgun profiles. The imputed datasets enhance downstream predictive tasks, achieving area under the curve scores that exceed or are comparable with those of the existing methods. To further improve the performance, we embedded host metadata into the model using a tabular encoding approach, which yielded additional improvements particularly under higher missing ratios. Our findings underscore the potential of the diffusion model for processing time-series microbiome data with missing values.</p><p><strong>Availability and implementation: </strong>Related codes and dataset can be found at: https://github.com/misatoseki/metag_time_impute_phylo.git.</p>","PeriodicalId":72368,"journal":{"name":"Bioinformatics advances","volume":"5 1","pages":"vbaf181"},"PeriodicalIF":2.8000,"publicationDate":"2025-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12371328/pdf/","citationCount":"0","resultStr":"{\"title\":\"Diffusion model for imputing time-series gut microbiome profiles using phylogenetic information and metadata integration.\",\"authors\":\"Misato Seki, Yao-Zhong Zhang, Seiya Imoto\",\"doi\":\"10.1093/bioadv/vbaf181\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Motivation: </strong>The gut microbiota interacts closely with the host, playing crucial roles in maintaining health. Analysing time-series genomic data enables the investigation of dynamic microbiota changes. However, missing values create significant analytical challenges.</p><p><strong>Results: </strong>We propose a microbiome imputation framework based on a conditional score-based diffusion model, tailored to microbiome data by incorporating phylogenetic convolutional layers. Our method effectively reduces mean absolute error across various missing data ratios for both 16S rRNA and whole-genome shotgun profiles. The imputed datasets enhance downstream predictive tasks, achieving area under the curve scores that exceed or are comparable with those of the existing methods. To further improve the performance, we embedded host metadata into the model using a tabular encoding approach, which yielded additional improvements particularly under higher missing ratios. Our findings underscore the potential of the diffusion model for processing time-series microbiome data with missing values.</p><p><strong>Availability and implementation: </strong>Related codes and dataset can be found at: https://github.com/misatoseki/metag_time_impute_phylo.git.</p>\",\"PeriodicalId\":72368,\"journal\":{\"name\":\"Bioinformatics advances\",\"volume\":\"5 1\",\"pages\":\"vbaf181\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-07-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12371328/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioinformatics advances\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/bioadv/vbaf181\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinformatics advances","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/bioadv/vbaf181","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

动机:肠道微生物群与宿主密切互动,在维持健康方面发挥着至关重要的作用。分析时间序列基因组数据使动态微生物群变化的调查。然而,缺失的值带来了重大的分析挑战。结果:我们提出了一个基于条件分数的扩散模型的微生物组输入框架,通过结合系统发育卷积层为微生物组数据量身定制。我们的方法有效地降低了16S rRNA和全基因组鸟枪图谱在各种缺失数据比率下的平均绝对误差。输入的数据集增强了下游预测任务,实现了超过或与现有方法相当的曲线下面积得分。为了进一步提高性能,我们使用表格编码方法将主机元数据嵌入到模型中,这产生了额外的改进,特别是在更高的缺失率下。我们的发现强调了扩散模型在处理缺失值的时间序列微生物组数据方面的潜力。可用性和实现:相关代码和数据集可在https://github.com/misatoseki/metag_time_impute_phylo.git找到。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Diffusion model for imputing time-series gut microbiome profiles using phylogenetic information and metadata integration.

Motivation: The gut microbiota interacts closely with the host, playing crucial roles in maintaining health. Analysing time-series genomic data enables the investigation of dynamic microbiota changes. However, missing values create significant analytical challenges.

Results: We propose a microbiome imputation framework based on a conditional score-based diffusion model, tailored to microbiome data by incorporating phylogenetic convolutional layers. Our method effectively reduces mean absolute error across various missing data ratios for both 16S rRNA and whole-genome shotgun profiles. The imputed datasets enhance downstream predictive tasks, achieving area under the curve scores that exceed or are comparable with those of the existing methods. To further improve the performance, we embedded host metadata into the model using a tabular encoding approach, which yielded additional improvements particularly under higher missing ratios. Our findings underscore the potential of the diffusion model for processing time-series microbiome data with missing values.

Availability and implementation: Related codes and dataset can be found at: https://github.com/misatoseki/metag_time_impute_phylo.git.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信