利用对比学习实现细胞外数据的鲁棒性和可泛化表示。

Ankit Vishnubhotla, Charlotte Loh, Liam Paninski, Akash Srivastava, Cole Hurwitz
{"title":"利用对比学习实现细胞外数据的鲁棒性和可泛化表示。","authors":"Ankit Vishnubhotla, Charlotte Loh, Liam Paninski, Akash Srivastava, Cole Hurwitz","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Contrastive learning is quickly becoming an essential tool in neuroscience for extracting robust and meaningful representations of neural activity. Despite numerous applications to neuronal population data, there has been little exploration of how these methods can be adapted to key primary data analysis tasks such as spike sorting or cell-type classification. In this work, we propose a novel contrastive learning framework, <b>CEED</b> (<b>C</b>ontrastive <b>E</b>mbeddings for <b>E</b>xtracellular <b>D</b>ata), for high-density extracellular recordings. We demonstrate that through careful design of the network architecture and data augmentations, it is possible to generically extract representations that far outperform current specialized approaches. We validate our method across multiple high-density extracellular recordings. All code used to run CEED can be found at https://github.com/ankitvishnu23/CEED.</p>","PeriodicalId":72099,"journal":{"name":"Advances in neural information processing systems","volume":"36 ","pages":"42271-42284"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12373126/pdf/","citationCount":"0","resultStr":"{\"title\":\"Towards robust and generalizable representations of extracellular data using contrastive learning.\",\"authors\":\"Ankit Vishnubhotla, Charlotte Loh, Liam Paninski, Akash Srivastava, Cole Hurwitz\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Contrastive learning is quickly becoming an essential tool in neuroscience for extracting robust and meaningful representations of neural activity. Despite numerous applications to neuronal population data, there has been little exploration of how these methods can be adapted to key primary data analysis tasks such as spike sorting or cell-type classification. In this work, we propose a novel contrastive learning framework, <b>CEED</b> (<b>C</b>ontrastive <b>E</b>mbeddings for <b>E</b>xtracellular <b>D</b>ata), for high-density extracellular recordings. We demonstrate that through careful design of the network architecture and data augmentations, it is possible to generically extract representations that far outperform current specialized approaches. We validate our method across multiple high-density extracellular recordings. All code used to run CEED can be found at https://github.com/ankitvishnu23/CEED.</p>\",\"PeriodicalId\":72099,\"journal\":{\"name\":\"Advances in neural information processing systems\",\"volume\":\"36 \",\"pages\":\"42271-42284\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12373126/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in neural information processing systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in neural information processing systems","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

对比学习正迅速成为神经科学中提取神经活动稳健且有意义表征的重要工具。尽管有许多应用于神经元群体数据,但这些方法如何适用于关键的初级数据分析任务,如尖峰分类或细胞类型分类,却很少有人探索。在这项工作中,我们提出了一个新的对比学习框架,CEED(对比嵌入细胞外数据),用于高密度的细胞外记录。我们证明,通过仔细设计网络架构和数据增强,可以提取出远远优于当前专门方法的表示。我们在多个高密度细胞外记录中验证了我们的方法。所有用于运行CEED的代码都可以在https://github.com/ankitvishnu23/CEED上找到。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Towards robust and generalizable representations of extracellular data using contrastive learning.

Contrastive learning is quickly becoming an essential tool in neuroscience for extracting robust and meaningful representations of neural activity. Despite numerous applications to neuronal population data, there has been little exploration of how these methods can be adapted to key primary data analysis tasks such as spike sorting or cell-type classification. In this work, we propose a novel contrastive learning framework, CEED (Contrastive Embeddings for Extracellular Data), for high-density extracellular recordings. We demonstrate that through careful design of the network architecture and data augmentations, it is possible to generically extract representations that far outperform current specialized approaches. We validate our method across multiple high-density extracellular recordings. All code used to run CEED can be found at https://github.com/ankitvishnu23/CEED.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信