Benchun Yan, Yuqiu Gao, Yulong Zou, Long Zhao, Zhiping Li
{"title":"预测耐药前列腺癌放射标记免疫治疗反应的蛋白质基因组生物标志物分析。","authors":"Benchun Yan, Yuqiu Gao, Yulong Zou, Long Zhao, Zhiping Li","doi":"10.1177/10849785251366066","DOIUrl":null,"url":null,"abstract":"<p><p>Treatment resistance prevents patients with preoperative chemoradiotherapy or targeted radiolabeled immunotherapy from achieving a good result, which remains a major challenge in the prostate cancer (PCa) area. A novel integrative framework combining a machine learning workflow with proteogenomic profiling was used to identify predictive ultrasound biomarkers and classify patient response to radiolabeled immunotherapy in high-risk PCa patients who are treatment resistant. The deep stacked autoencoder (DSAE) model, combined with Extreme Gradient Boosting, was designed for feature refinement and classification. The Cancer Genome Atlas and an independent radiotherapy-treated cohort have been utilized to collect multiomics data through their respective applications. In addition to genetic mutations (whole-exome sequencing), these data contained proteomic (mass spectrometry) and transcriptomic (RNA sequencing) data. Maintaining biological variety across omics layers while reducing the dimensionality of the data requires the use of the DSAE architecture. Resistance phenotypes show a notable relationship with proteogenomic profiles, including DNA repair pathways (Breast Cancer gene 2 [BRCA2], ataxia-telangiectasia mutated [ATM]), androgen receptor (AR) signaling regulators, and metabolic enzymes (ATP citrate lyase [ACLY], isocitrate dehydrogenase 1 [IDH1]). A specific panel of ultrasound biomarkers has been confirmed in a state deemed preclinical using patient-derived xenografts. To support clinical translation, real-time phenotypic features from ultrasound imaging (e.g., perfusion, stiffness) were also considered, providing complementary insights into the tumor microenvironment and treatment responsiveness. This approach provides an integrated platform that offers a clinically actionable foundation for the development of radiolabeled immunotherapy drugs before surgical operations.</p>","PeriodicalId":55277,"journal":{"name":"Cancer Biotherapy and Radiopharmaceuticals","volume":" ","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2025-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Proteogenomic Biomarker Profiling for Predicting Radiolabeled Immunotherapy Response in Resistant Prostate Cancer.\",\"authors\":\"Benchun Yan, Yuqiu Gao, Yulong Zou, Long Zhao, Zhiping Li\",\"doi\":\"10.1177/10849785251366066\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Treatment resistance prevents patients with preoperative chemoradiotherapy or targeted radiolabeled immunotherapy from achieving a good result, which remains a major challenge in the prostate cancer (PCa) area. A novel integrative framework combining a machine learning workflow with proteogenomic profiling was used to identify predictive ultrasound biomarkers and classify patient response to radiolabeled immunotherapy in high-risk PCa patients who are treatment resistant. The deep stacked autoencoder (DSAE) model, combined with Extreme Gradient Boosting, was designed for feature refinement and classification. The Cancer Genome Atlas and an independent radiotherapy-treated cohort have been utilized to collect multiomics data through their respective applications. In addition to genetic mutations (whole-exome sequencing), these data contained proteomic (mass spectrometry) and transcriptomic (RNA sequencing) data. Maintaining biological variety across omics layers while reducing the dimensionality of the data requires the use of the DSAE architecture. Resistance phenotypes show a notable relationship with proteogenomic profiles, including DNA repair pathways (Breast Cancer gene 2 [BRCA2], ataxia-telangiectasia mutated [ATM]), androgen receptor (AR) signaling regulators, and metabolic enzymes (ATP citrate lyase [ACLY], isocitrate dehydrogenase 1 [IDH1]). A specific panel of ultrasound biomarkers has been confirmed in a state deemed preclinical using patient-derived xenografts. To support clinical translation, real-time phenotypic features from ultrasound imaging (e.g., perfusion, stiffness) were also considered, providing complementary insights into the tumor microenvironment and treatment responsiveness. This approach provides an integrated platform that offers a clinically actionable foundation for the development of radiolabeled immunotherapy drugs before surgical operations.</p>\",\"PeriodicalId\":55277,\"journal\":{\"name\":\"Cancer Biotherapy and Radiopharmaceuticals\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2025-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cancer Biotherapy and Radiopharmaceuticals\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1177/10849785251366066\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer Biotherapy and Radiopharmaceuticals","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/10849785251366066","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
Proteogenomic Biomarker Profiling for Predicting Radiolabeled Immunotherapy Response in Resistant Prostate Cancer.
Treatment resistance prevents patients with preoperative chemoradiotherapy or targeted radiolabeled immunotherapy from achieving a good result, which remains a major challenge in the prostate cancer (PCa) area. A novel integrative framework combining a machine learning workflow with proteogenomic profiling was used to identify predictive ultrasound biomarkers and classify patient response to radiolabeled immunotherapy in high-risk PCa patients who are treatment resistant. The deep stacked autoencoder (DSAE) model, combined with Extreme Gradient Boosting, was designed for feature refinement and classification. The Cancer Genome Atlas and an independent radiotherapy-treated cohort have been utilized to collect multiomics data through their respective applications. In addition to genetic mutations (whole-exome sequencing), these data contained proteomic (mass spectrometry) and transcriptomic (RNA sequencing) data. Maintaining biological variety across omics layers while reducing the dimensionality of the data requires the use of the DSAE architecture. Resistance phenotypes show a notable relationship with proteogenomic profiles, including DNA repair pathways (Breast Cancer gene 2 [BRCA2], ataxia-telangiectasia mutated [ATM]), androgen receptor (AR) signaling regulators, and metabolic enzymes (ATP citrate lyase [ACLY], isocitrate dehydrogenase 1 [IDH1]). A specific panel of ultrasound biomarkers has been confirmed in a state deemed preclinical using patient-derived xenografts. To support clinical translation, real-time phenotypic features from ultrasound imaging (e.g., perfusion, stiffness) were also considered, providing complementary insights into the tumor microenvironment and treatment responsiveness. This approach provides an integrated platform that offers a clinically actionable foundation for the development of radiolabeled immunotherapy drugs before surgical operations.
期刊介绍:
Cancer Biotherapy and Radiopharmaceuticals is the established peer-reviewed journal, with over 25 years of cutting-edge content on innovative therapeutic investigations to ultimately improve cancer management. It is the only journal with the specific focus of cancer biotherapy and is inclusive of monoclonal antibodies, cytokine therapy, cancer gene therapy, cell-based therapies, and other forms of immunotherapies.
The Journal includes extensive reporting on advancements in radioimmunotherapy, and the use of radiopharmaceuticals and radiolabeled peptides for the development of new cancer treatments.