{"title":"基于深度传递超图神经网络的单细胞多组学数据集成。","authors":"Yulong Kan, Zhongxiao Zhang, Yingjie Wang, Yunjing Qi, Haoxin Chang, Weihao Wang, Zheng Zhang, Quanhong Liu, Xiaoran Shi","doi":"10.1093/bfgp/elaf009","DOIUrl":null,"url":null,"abstract":"<p><p>Multi-omics characterization of individual cells offers remarkable potential for analyzing the dynamics and relationships of gene regulatory states across millions of cells. How to integrate multimodal data is an open problem, existing integration methods struggle with accuracy and modality-specific biological variation retention. In this paper, we present scHyper (scalable, interpretable machine learning for single cell integration), a low-code and data-efficient deep transfer model designed for integrating paired and unpaired single-cell multimodal data. We benchmark scHyper against datasets from different multimodal data. ScHyper learns a low-dimensional representation and aligns the covariance matrices of the measured modalities, achieving high accuracy even with large scale atlas-level datasets with low memory and computational time across different cell lines, shedding light on regulatory relationships between different types of omics. Altogether, we show that scHyper is a versatile and robust tool for cell-type label transfer and integration from multimodal single-cell datasets.</p>","PeriodicalId":55323,"journal":{"name":"Briefings in Functional Genomics","volume":"24 ","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12397973/pdf/","citationCount":"0","resultStr":"{\"title\":\"Integration of single cell multiomics data by deep transfer hypergraph neural network.\",\"authors\":\"Yulong Kan, Zhongxiao Zhang, Yingjie Wang, Yunjing Qi, Haoxin Chang, Weihao Wang, Zheng Zhang, Quanhong Liu, Xiaoran Shi\",\"doi\":\"10.1093/bfgp/elaf009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Multi-omics characterization of individual cells offers remarkable potential for analyzing the dynamics and relationships of gene regulatory states across millions of cells. How to integrate multimodal data is an open problem, existing integration methods struggle with accuracy and modality-specific biological variation retention. In this paper, we present scHyper (scalable, interpretable machine learning for single cell integration), a low-code and data-efficient deep transfer model designed for integrating paired and unpaired single-cell multimodal data. We benchmark scHyper against datasets from different multimodal data. ScHyper learns a low-dimensional representation and aligns the covariance matrices of the measured modalities, achieving high accuracy even with large scale atlas-level datasets with low memory and computational time across different cell lines, shedding light on regulatory relationships between different types of omics. Altogether, we show that scHyper is a versatile and robust tool for cell-type label transfer and integration from multimodal single-cell datasets.</p>\",\"PeriodicalId\":55323,\"journal\":{\"name\":\"Briefings in Functional Genomics\",\"volume\":\"24 \",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-01-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12397973/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Briefings in Functional Genomics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/bfgp/elaf009\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Briefings in Functional Genomics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/bfgp/elaf009","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Integration of single cell multiomics data by deep transfer hypergraph neural network.
Multi-omics characterization of individual cells offers remarkable potential for analyzing the dynamics and relationships of gene regulatory states across millions of cells. How to integrate multimodal data is an open problem, existing integration methods struggle with accuracy and modality-specific biological variation retention. In this paper, we present scHyper (scalable, interpretable machine learning for single cell integration), a low-code and data-efficient deep transfer model designed for integrating paired and unpaired single-cell multimodal data. We benchmark scHyper against datasets from different multimodal data. ScHyper learns a low-dimensional representation and aligns the covariance matrices of the measured modalities, achieving high accuracy even with large scale atlas-level datasets with low memory and computational time across different cell lines, shedding light on regulatory relationships between different types of omics. Altogether, we show that scHyper is a versatile and robust tool for cell-type label transfer and integration from multimodal single-cell datasets.
期刊介绍:
Briefings in Functional Genomics publishes high quality peer reviewed articles that focus on the use, development or exploitation of genomic approaches, and their application to all areas of biological research. As well as exploring thematic areas where these techniques and protocols are being used, articles review the impact that these approaches have had, or are likely to have, on their field. Subjects covered by the Journal include but are not restricted to: the identification and functional characterisation of coding and non-coding features in genomes, microarray technologies, gene expression profiling, next generation sequencing, pharmacogenomics, phenomics, SNP technologies, transgenic systems, mutation screens and genotyping. Articles range in scope and depth from the introductory level to specific details of protocols and analyses, encompassing bacterial, fungal, plant, animal and human data.
The editorial board welcome the submission of review articles for publication. Essential criteria for the publication of papers is that they do not contain primary data, and that they are high quality, clearly written review articles which provide a balanced, highly informative and up to date perspective to researchers in the field of functional genomics.