{"title":"肿瘤细胞外基质和调节性T细胞的生物力学:调节机制和潜在的治疗靶点。","authors":"Wen-Bo Huang, Heng-Zhou Lai, Jing Long, Zhuo-Ling Dai, Qiong Ma, Chong Xiao, Feng-Ming You","doi":"10.1186/s12964-025-02380-z","DOIUrl":null,"url":null,"abstract":"<p><p>Tumor-infiltrating regulatory T cells (TI-Tregs) are characterized by their abnormal accumulation and heightened immunosuppressive activity. However, the biomechanical mechanisms that govern Treg identity and function through extracellular matrix (ECM) properties remain poorly understood. In three-dimensional culture systems and the tumor microenvironment (TME), increased matrix stiffness and viscoelasticity have been shown to promote Treg differentiation and expansion. Structural remodeling of the ECM, particularly the realignment of collagen fibers and the reduction in effective pore size, significantly enhances Treg migration. Moreover, biomechanical signals derived from the ECM strengthen the oxidative phosphorylation (OXPHOS) metabolic phenotype and immunosuppressive function of Tregs by modulating mitochondrial dynamics. This review provides a comprehensive analysis of the molecular events through which ECM mechanical properties-such as stiffness, viscoelasticity, and topological structure-regulate Treg identity and functionality, as well as the mechanical sensing and response mechanisms employed by Tregs. The potential for targeting Treg mechanosensors and mechanotransduction pathways to develop mechano-immunomodulatory strategies for cancer therapy is also discussed.</p>","PeriodicalId":55268,"journal":{"name":"Cell Communication and Signaling","volume":"23 1","pages":"375"},"PeriodicalIF":8.2000,"publicationDate":"2025-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12369269/pdf/","citationCount":"0","resultStr":"{\"title\":\"Biomechanics of the tumor extracellular matrix and regulatory T cells: regulatory mechanisms and potential therapeutic targets.\",\"authors\":\"Wen-Bo Huang, Heng-Zhou Lai, Jing Long, Zhuo-Ling Dai, Qiong Ma, Chong Xiao, Feng-Ming You\",\"doi\":\"10.1186/s12964-025-02380-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Tumor-infiltrating regulatory T cells (TI-Tregs) are characterized by their abnormal accumulation and heightened immunosuppressive activity. However, the biomechanical mechanisms that govern Treg identity and function through extracellular matrix (ECM) properties remain poorly understood. In three-dimensional culture systems and the tumor microenvironment (TME), increased matrix stiffness and viscoelasticity have been shown to promote Treg differentiation and expansion. Structural remodeling of the ECM, particularly the realignment of collagen fibers and the reduction in effective pore size, significantly enhances Treg migration. Moreover, biomechanical signals derived from the ECM strengthen the oxidative phosphorylation (OXPHOS) metabolic phenotype and immunosuppressive function of Tregs by modulating mitochondrial dynamics. This review provides a comprehensive analysis of the molecular events through which ECM mechanical properties-such as stiffness, viscoelasticity, and topological structure-regulate Treg identity and functionality, as well as the mechanical sensing and response mechanisms employed by Tregs. The potential for targeting Treg mechanosensors and mechanotransduction pathways to develop mechano-immunomodulatory strategies for cancer therapy is also discussed.</p>\",\"PeriodicalId\":55268,\"journal\":{\"name\":\"Cell Communication and Signaling\",\"volume\":\"23 1\",\"pages\":\"375\"},\"PeriodicalIF\":8.2000,\"publicationDate\":\"2025-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12369269/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell Communication and Signaling\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s12964-025-02380-z\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Communication and Signaling","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12964-025-02380-z","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Biomechanics of the tumor extracellular matrix and regulatory T cells: regulatory mechanisms and potential therapeutic targets.
Tumor-infiltrating regulatory T cells (TI-Tregs) are characterized by their abnormal accumulation and heightened immunosuppressive activity. However, the biomechanical mechanisms that govern Treg identity and function through extracellular matrix (ECM) properties remain poorly understood. In three-dimensional culture systems and the tumor microenvironment (TME), increased matrix stiffness and viscoelasticity have been shown to promote Treg differentiation and expansion. Structural remodeling of the ECM, particularly the realignment of collagen fibers and the reduction in effective pore size, significantly enhances Treg migration. Moreover, biomechanical signals derived from the ECM strengthen the oxidative phosphorylation (OXPHOS) metabolic phenotype and immunosuppressive function of Tregs by modulating mitochondrial dynamics. This review provides a comprehensive analysis of the molecular events through which ECM mechanical properties-such as stiffness, viscoelasticity, and topological structure-regulate Treg identity and functionality, as well as the mechanical sensing and response mechanisms employed by Tregs. The potential for targeting Treg mechanosensors and mechanotransduction pathways to develop mechano-immunomodulatory strategies for cancer therapy is also discussed.
期刊介绍:
Cell Communication and Signaling (CCS) is a peer-reviewed, open-access scientific journal that focuses on cellular signaling pathways in both normal and pathological conditions. It publishes original research, reviews, and commentaries, welcoming studies that utilize molecular, morphological, biochemical, structural, and cell biology approaches. CCS also encourages interdisciplinary work and innovative models, including in silico, in vitro, and in vivo approaches, to facilitate investigations of cell signaling pathways, networks, and behavior.
Starting from January 2019, CCS is proud to announce its affiliation with the International Cell Death Society. The journal now encourages submissions covering all aspects of cell death, including apoptotic and non-apoptotic mechanisms, cell death in model systems, autophagy, clearance of dying cells, and the immunological and pathological consequences of dying cells in the tissue microenvironment.