{"title":"具有非线性密度依赖调节的黄菖蒲动力学的温度驱动、阶段结构随机模型中的灭绝和持续。","authors":"F.E. Cornes , R.H. Barriga Rubio , M. Otero","doi":"10.1016/j.jtbi.2025.112256","DOIUrl":null,"url":null,"abstract":"<div><div>We present an extension of a previously developed stochastic, stage-structured model of <em>Dalbulus maidis</em> (corn leafhopper), an important pest and vector in maize crops. The extended model introduces nonlinear density-dependent regulation on the nymphal stage, mediated by a carrying capacity that dynamically depends on the leaf area of maize plants. Both insect and host-plant dynamics are explicitly modeled, but the interaction is asymmetric, as the plant is not affected by the insect in the present formulation. Our main objective is to explore how the interplay between temperature-driven development and host-plant dynamics shapes the long-term behavior of the insect population, leading to either extinction or persistence. Using simulations parameterized with laboratory and field data, we analyze how temperature and maize development affect insect dynamics, and assess whether the model can reproduce observed abundance patterns under realistic conditions. This modeling framework provides a biologically grounded and flexible basis for future extensions, including pathogen transmission and bidirectional feedback between the maize and the insect.</div></div>","PeriodicalId":54763,"journal":{"name":"Journal of Theoretical Biology","volume":"615 ","pages":"Article 112256"},"PeriodicalIF":2.0000,"publicationDate":"2025-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Extinction and persistence in a temperature-driven, stage-structured stochastic model of Dalbulus maidis dynamics with nonlinear density-dependent regulation\",\"authors\":\"F.E. Cornes , R.H. Barriga Rubio , M. Otero\",\"doi\":\"10.1016/j.jtbi.2025.112256\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We present an extension of a previously developed stochastic, stage-structured model of <em>Dalbulus maidis</em> (corn leafhopper), an important pest and vector in maize crops. The extended model introduces nonlinear density-dependent regulation on the nymphal stage, mediated by a carrying capacity that dynamically depends on the leaf area of maize plants. Both insect and host-plant dynamics are explicitly modeled, but the interaction is asymmetric, as the plant is not affected by the insect in the present formulation. Our main objective is to explore how the interplay between temperature-driven development and host-plant dynamics shapes the long-term behavior of the insect population, leading to either extinction or persistence. Using simulations parameterized with laboratory and field data, we analyze how temperature and maize development affect insect dynamics, and assess whether the model can reproduce observed abundance patterns under realistic conditions. This modeling framework provides a biologically grounded and flexible basis for future extensions, including pathogen transmission and bidirectional feedback between the maize and the insect.</div></div>\",\"PeriodicalId\":54763,\"journal\":{\"name\":\"Journal of Theoretical Biology\",\"volume\":\"615 \",\"pages\":\"Article 112256\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2025-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Theoretical Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S002251932500222X\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Theoretical Biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S002251932500222X","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
Extinction and persistence in a temperature-driven, stage-structured stochastic model of Dalbulus maidis dynamics with nonlinear density-dependent regulation
We present an extension of a previously developed stochastic, stage-structured model of Dalbulus maidis (corn leafhopper), an important pest and vector in maize crops. The extended model introduces nonlinear density-dependent regulation on the nymphal stage, mediated by a carrying capacity that dynamically depends on the leaf area of maize plants. Both insect and host-plant dynamics are explicitly modeled, but the interaction is asymmetric, as the plant is not affected by the insect in the present formulation. Our main objective is to explore how the interplay between temperature-driven development and host-plant dynamics shapes the long-term behavior of the insect population, leading to either extinction or persistence. Using simulations parameterized with laboratory and field data, we analyze how temperature and maize development affect insect dynamics, and assess whether the model can reproduce observed abundance patterns under realistic conditions. This modeling framework provides a biologically grounded and flexible basis for future extensions, including pathogen transmission and bidirectional feedback between the maize and the insect.
期刊介绍:
The Journal of Theoretical Biology is the leading forum for theoretical perspectives that give insight into biological processes. It covers a very wide range of topics and is of interest to biologists in many areas of research, including:
• Brain and Neuroscience
• Cancer Growth and Treatment
• Cell Biology
• Developmental Biology
• Ecology
• Evolution
• Immunology,
• Infectious and non-infectious Diseases,
• Mathematical, Computational, Biophysical and Statistical Modeling
• Microbiology, Molecular Biology, and Biochemistry
• Networks and Complex Systems
• Physiology
• Pharmacodynamics
• Animal Behavior and Game Theory
Acceptable papers are those that bear significant importance on the biology per se being presented, and not on the mathematical analysis. Papers that include some data or experimental material bearing on theory will be considered, including those that contain comparative study, statistical data analysis, mathematical proof, computer simulations, experiments, field observations, or even philosophical arguments, which are all methods to support or reject theoretical ideas. However, there should be a concerted effort to make papers intelligible to biologists in the chosen field.