歧义错分类二元协变量逻辑回归的贝叶斯变量选择。

IF 0.8 4区 数学 Q3 STATISTICS & PROBABILITY
Daniel P Beavers, Yutong Li, James D Stamey, Stephanie Powers, Walter T Ambrosius
{"title":"歧义错分类二元协变量逻辑回归的贝叶斯变量选择。","authors":"Daniel P Beavers, Yutong Li, James D Stamey, Stephanie Powers, Walter T Ambrosius","doi":"10.1080/03610918.2025.2496305","DOIUrl":null,"url":null,"abstract":"<p><p>A Bayesian approach for variable selection is developed for use in models with a misclassified binary predictor variable. We define the main outcome model containing the latent predictor, the measurement model associated with the prevalence of the predictor, and the sensitivity and specificity models of the fallible classifier conditioned on the true value of the predictor. We use binary indicator variables to execute the Gibbs sampler-based variable selection process, and we identify the highest posterior probability model given the data. We demonstrate the performance of the procedure in several simulation studies, and we utilize the selection method to optimize model performance in two datasets.</p>","PeriodicalId":55240,"journal":{"name":"Communications in Statistics-Simulation and Computation","volume":" ","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2025-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12371521/pdf/","citationCount":"0","resultStr":"{\"title\":\"Bayesian variable selection for logistic regression with a differentially misclassified binary covariate.\",\"authors\":\"Daniel P Beavers, Yutong Li, James D Stamey, Stephanie Powers, Walter T Ambrosius\",\"doi\":\"10.1080/03610918.2025.2496305\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>A Bayesian approach for variable selection is developed for use in models with a misclassified binary predictor variable. We define the main outcome model containing the latent predictor, the measurement model associated with the prevalence of the predictor, and the sensitivity and specificity models of the fallible classifier conditioned on the true value of the predictor. We use binary indicator variables to execute the Gibbs sampler-based variable selection process, and we identify the highest posterior probability model given the data. We demonstrate the performance of the procedure in several simulation studies, and we utilize the selection method to optimize model performance in two datasets.</p>\",\"PeriodicalId\":55240,\"journal\":{\"name\":\"Communications in Statistics-Simulation and Computation\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2025-05-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12371521/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Statistics-Simulation and Computation\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1080/03610918.2025.2496305\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Statistics-Simulation and Computation","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/03610918.2025.2496305","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

一种贝叶斯方法的变量选择是开发用于模型与一个错误分类的二元预测变量。我们定义了包含潜在预测因子的主要结果模型,与预测因子的流行率相关的测量模型,以及以预测因子的真实值为条件的可错分类器的敏感性和特异性模型。我们使用二元指标变量来执行基于吉布斯样本的变量选择过程,并确定给定数据的最高后验概率模型。我们在几个仿真研究中证明了该过程的性能,并利用选择方法在两个数据集上优化模型性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bayesian variable selection for logistic regression with a differentially misclassified binary covariate.

A Bayesian approach for variable selection is developed for use in models with a misclassified binary predictor variable. We define the main outcome model containing the latent predictor, the measurement model associated with the prevalence of the predictor, and the sensitivity and specificity models of the fallible classifier conditioned on the true value of the predictor. We use binary indicator variables to execute the Gibbs sampler-based variable selection process, and we identify the highest posterior probability model given the data. We demonstrate the performance of the procedure in several simulation studies, and we utilize the selection method to optimize model performance in two datasets.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.50
自引率
11.10%
发文量
240
审稿时长
6 months
期刊介绍: The Simulation and Computation series intends to publish papers that make theoretical and methodological advances relating to computational aspects of Probability and Statistics. Simulational assessment and comparison of the performance of statistical and probabilistic methods will also be considered for publication. Papers stressing graphical methods, resampling and other computationally intensive methods will be particularly relevant. In addition, special issues dedicated to a specific topic of current interest will also be published in this series periodically, providing an exhaustive and up-to-date review of that topic to the readership.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信