B A Remppis, M J Zellweger, S Kelle, A Leber, M Weißer, P V Heinl, L S Freudenberg, C Rischpler, T Emrich, P Mildenberger, T Helms
{"title":"【冠心病——德国悖论:利用人工智能技术解决相关医疗问题】。","authors":"B A Remppis, M J Zellweger, S Kelle, A Leber, M Weißer, P V Heinl, L S Freudenberg, C Rischpler, T Emrich, P Mildenberger, T Helms","doi":"10.1007/s00399-025-01094-6","DOIUrl":null,"url":null,"abstract":"<p><p>The German healthcare system is facing challenges in diagnosing coronary artery disease (CAD). These include high mortality rates, even when advanced medical technology is used, and an excessive number of coronary angiographies. A key issue is that current guideline models inaccurately estimate pretest probability (PTP). However, accurately determining PTP is crucial for efficiently guiding the diagnostic pathway and ensuring cost-effectiveness. Artificial intelligence (AI)-based systems offer a solution for precisely determining a personalized PTP. Approved medical AI devices calculate a personalized PTP using laboratory values and medical history. These systems achieve high accuracy (area under the curve 0.87), improve patient selection, avoid unnecessary diagnostics for low-risk patients, and demonstrate significant cost savings. AI-based PTP is essential for improving guideline-based CAD diagnostics and utilizing resources more efficiently.</p>","PeriodicalId":52403,"journal":{"name":"Herzschrittmachertherapie und Elektrophysiologie","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"[Coronary heart disease-a German paradox : Using AI-based technology to solve a relevant healthcare problem].\",\"authors\":\"B A Remppis, M J Zellweger, S Kelle, A Leber, M Weißer, P V Heinl, L S Freudenberg, C Rischpler, T Emrich, P Mildenberger, T Helms\",\"doi\":\"10.1007/s00399-025-01094-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The German healthcare system is facing challenges in diagnosing coronary artery disease (CAD). These include high mortality rates, even when advanced medical technology is used, and an excessive number of coronary angiographies. A key issue is that current guideline models inaccurately estimate pretest probability (PTP). However, accurately determining PTP is crucial for efficiently guiding the diagnostic pathway and ensuring cost-effectiveness. Artificial intelligence (AI)-based systems offer a solution for precisely determining a personalized PTP. Approved medical AI devices calculate a personalized PTP using laboratory values and medical history. These systems achieve high accuracy (area under the curve 0.87), improve patient selection, avoid unnecessary diagnostics for low-risk patients, and demonstrate significant cost savings. AI-based PTP is essential for improving guideline-based CAD diagnostics and utilizing resources more efficiently.</p>\",\"PeriodicalId\":52403,\"journal\":{\"name\":\"Herzschrittmachertherapie und Elektrophysiologie\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Herzschrittmachertherapie und Elektrophysiologie\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s00399-025-01094-6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Herzschrittmachertherapie und Elektrophysiologie","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00399-025-01094-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Medicine","Score":null,"Total":0}
[Coronary heart disease-a German paradox : Using AI-based technology to solve a relevant healthcare problem].
The German healthcare system is facing challenges in diagnosing coronary artery disease (CAD). These include high mortality rates, even when advanced medical technology is used, and an excessive number of coronary angiographies. A key issue is that current guideline models inaccurately estimate pretest probability (PTP). However, accurately determining PTP is crucial for efficiently guiding the diagnostic pathway and ensuring cost-effectiveness. Artificial intelligence (AI)-based systems offer a solution for precisely determining a personalized PTP. Approved medical AI devices calculate a personalized PTP using laboratory values and medical history. These systems achieve high accuracy (area under the curve 0.87), improve patient selection, avoid unnecessary diagnostics for low-risk patients, and demonstrate significant cost savings. AI-based PTP is essential for improving guideline-based CAD diagnostics and utilizing resources more efficiently.
期刊介绍:
Mit wissenschaftlichen Original- und Übersichtsarbeiten, Berichten über moderne Operationstechniken und experimentelle Methoden ist die Zeitschrift Herzschrittmachertherapie + Elektrophysiologie ein Diskussionsforum für Themen wie:
- Zelluläre Elektrophysiologie
- Theoretische Elektrophysiologie
- Klinische Elektrophysiologie
- Angewandte Herzschrittmachertherapie
- Bradykarde und tachykarde Herzrhythmusstörungen
- Plötzlicher Herztod und Risikostratifikation
- Elektrokardiographie
- Elektromedizinische Technologie
- Experimentelle und klinische Pharmakologie
- Herzchirurgie bei Herzrhythmusstörungen
Mitteilungen der Arbeitsgruppen Herzschrittmacher und Arrhythmie der Deutschen Gesellschaft für Kardiologie - Herz und Kreislaufforschung e.V. (DGK) sowie Stellungnahmen und praktische Hinweise runden das breite Spektrum dieser Zeitschrift ab.
Interessensgebiete: Kardiologie, Herzschrittmachertherapie, Herzschrittmachertechnologie, klinische Elektrophysiologie