减轻L0范数和总变差范数的缺陷。

IF 1.6 3区 数学 Q1 MATHEMATICS, APPLIED
Axioms Pub Date : 2025-08-01 Epub Date: 2025-08-04 DOI:10.3390/axioms14080605
Gengsheng L Zeng
{"title":"减轻L0范数和总变差范数的缺陷。","authors":"Gengsheng L Zeng","doi":"10.3390/axioms14080605","DOIUrl":null,"url":null,"abstract":"<p><p>In compressed sensing, it is believed that the <math> <msub><mrow><mi>L</mi></mrow> <mrow><mn>0</mn></mrow> </msub> </math> norm minimization is the best way to enforce a sparse solution. However, the <math> <msub><mrow><mi>L</mi></mrow> <mrow><mn>0</mn></mrow> </msub> </math> norm is difficult to implement in a gradient-based iterative image reconstruction algorithm. The total variation (TV) norm minimization is considered a proper substitute for the <math> <msub><mrow><mi>L</mi></mrow> <mrow><mn>0</mn></mrow> </msub> </math> norm minimization. This paper points out that the TV norm is not powerful enough to enforce a piecewise-constant image. This paper uses the limited-angle tomography to illustrate the possibility of using the <math> <msub><mrow><mi>L</mi></mrow> <mrow><mn>0</mn></mrow> </msub> </math> norm to encourage a piecewise-constant image. However, one of the drawbacks of the <math> <msub><mrow><mi>L</mi></mrow> <mrow><mn>0</mn></mrow> </msub> </math> norm is that its derivative is zero almost everywhere, making a gradient-based algorithm useless. Our novel idea is to replace the zero value of the <math> <msub><mrow><mi>L</mi></mrow> <mrow><mn>0</mn></mrow> </msub> </math> norm derivative with a zero-mean random variable. Computer simulations show that the proposed <math> <msub><mrow><mi>L</mi></mrow> <mrow><mn>0</mn></mrow> </msub> </math> norm minimization outperforms the TV minimization. The novelty of this paper is the introduction of some randomness in the gradient of the objective function when the gradient is zero. The quantitative evaluations indicate the improvements of the proposed method in terms of the structural similarity (SSIM) and the peak signal-to-noise ratio (PSNR).</p>","PeriodicalId":53148,"journal":{"name":"Axioms","volume":"14 8","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12377048/pdf/","citationCount":"0","resultStr":"{\"title\":\"Mitigating the Drawbacks of the L<sub>0</sub> Norm and the Total Variation Norm.\",\"authors\":\"Gengsheng L Zeng\",\"doi\":\"10.3390/axioms14080605\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In compressed sensing, it is believed that the <math> <msub><mrow><mi>L</mi></mrow> <mrow><mn>0</mn></mrow> </msub> </math> norm minimization is the best way to enforce a sparse solution. However, the <math> <msub><mrow><mi>L</mi></mrow> <mrow><mn>0</mn></mrow> </msub> </math> norm is difficult to implement in a gradient-based iterative image reconstruction algorithm. The total variation (TV) norm minimization is considered a proper substitute for the <math> <msub><mrow><mi>L</mi></mrow> <mrow><mn>0</mn></mrow> </msub> </math> norm minimization. This paper points out that the TV norm is not powerful enough to enforce a piecewise-constant image. This paper uses the limited-angle tomography to illustrate the possibility of using the <math> <msub><mrow><mi>L</mi></mrow> <mrow><mn>0</mn></mrow> </msub> </math> norm to encourage a piecewise-constant image. However, one of the drawbacks of the <math> <msub><mrow><mi>L</mi></mrow> <mrow><mn>0</mn></mrow> </msub> </math> norm is that its derivative is zero almost everywhere, making a gradient-based algorithm useless. Our novel idea is to replace the zero value of the <math> <msub><mrow><mi>L</mi></mrow> <mrow><mn>0</mn></mrow> </msub> </math> norm derivative with a zero-mean random variable. Computer simulations show that the proposed <math> <msub><mrow><mi>L</mi></mrow> <mrow><mn>0</mn></mrow> </msub> </math> norm minimization outperforms the TV minimization. The novelty of this paper is the introduction of some randomness in the gradient of the objective function when the gradient is zero. The quantitative evaluations indicate the improvements of the proposed method in terms of the structural similarity (SSIM) and the peak signal-to-noise ratio (PSNR).</p>\",\"PeriodicalId\":53148,\"journal\":{\"name\":\"Axioms\",\"volume\":\"14 8\",\"pages\":\"\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2025-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12377048/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Axioms\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3390/axioms14080605\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/8/4 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Axioms","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3390/axioms14080605","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/8/4 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

在压缩感知中,人们认为l0范数最小化是实现稀疏解的最佳方法。然而,在基于梯度的迭代图像重建算法中,l0范数难以实现。总变差(TV)范数最小化被认为是l0范数最小化的合适替代。本文指出,电视规范不足以强制实现分段不变的图像。本文使用有限角度断层成像来说明使用l0范数来鼓励分段常数图像的可能性。然而,l0范数的缺点之一是它的导数几乎处处为零,使得基于梯度的算法毫无用处。我们的新想法是用零均值随机变量代替l0范数导数的零值。计算机仿真结果表明,所提出的l0范数最小化算法优于TV最小化算法。本文的新颖之处在于当梯度为零时,在目标函数的梯度中引入了一些随机性。定量评价表明,该方法在结构相似度(SSIM)和峰值信噪比(PSNR)方面有所改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Mitigating the Drawbacks of the L<sub>0</sub> Norm and the Total Variation Norm.

Mitigating the Drawbacks of the L<sub>0</sub> Norm and the Total Variation Norm.

Mitigating the Drawbacks of the L<sub>0</sub> Norm and the Total Variation Norm.

Mitigating the Drawbacks of the L0 Norm and the Total Variation Norm.

In compressed sensing, it is believed that the L 0 norm minimization is the best way to enforce a sparse solution. However, the L 0 norm is difficult to implement in a gradient-based iterative image reconstruction algorithm. The total variation (TV) norm minimization is considered a proper substitute for the L 0 norm minimization. This paper points out that the TV norm is not powerful enough to enforce a piecewise-constant image. This paper uses the limited-angle tomography to illustrate the possibility of using the L 0 norm to encourage a piecewise-constant image. However, one of the drawbacks of the L 0 norm is that its derivative is zero almost everywhere, making a gradient-based algorithm useless. Our novel idea is to replace the zero value of the L 0 norm derivative with a zero-mean random variable. Computer simulations show that the proposed L 0 norm minimization outperforms the TV minimization. The novelty of this paper is the introduction of some randomness in the gradient of the objective function when the gradient is zero. The quantitative evaluations indicate the improvements of the proposed method in terms of the structural similarity (SSIM) and the peak signal-to-noise ratio (PSNR).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Axioms
Axioms Mathematics-Algebra and Number Theory
自引率
10.00%
发文量
604
审稿时长
11 weeks
期刊介绍: Axiomatic theories in physics and in mathematics (for example, axiomatic theory of thermodynamics, and also either the axiomatic classical set theory or the axiomatic fuzzy set theory) Axiomatization, axiomatic methods, theorems, mathematical proofs Algebraic structures, field theory, group theory, topology, vector spaces Mathematical analysis Mathematical physics Mathematical logic, and non-classical logics, such as fuzzy logic, modal logic, non-monotonic logic. etc. Classical and fuzzy set theories Number theory Systems theory Classical measures, fuzzy measures, representation theory, and probability theory Graph theory Information theory Entropy Symmetry Differential equations and dynamical systems Relativity and quantum theories Mathematical chemistry Automata theory Mathematical problems of artificial intelligence Complex networks from a mathematical viewpoint Reasoning under uncertainty Interdisciplinary applications of mathematical theory.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信