边缘成像:用立体x射线断层成像映射物体的角和边缘。

IF 2.2 4区 医学 Q2 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
Zhenduo Shang, Thomas Blumensath
{"title":"边缘成像:用立体x射线断层成像映射物体的角和边缘。","authors":"Zhenduo Shang, Thomas Blumensath","doi":"10.3390/tomography11080084","DOIUrl":null,"url":null,"abstract":"<p><p><b>Background/Objectives:</b> X-ray computed tomography (XCT) is a powerful tool for volumetric imaging, where three-dimensional (3D) images are generated from a large number of individual X-ray projection images. However, collecting the required number of low-noise projection images is time-consuming, limiting its applicability to scenarios requiring high temporal resolution, such as the study of dynamic processes. Inspired by stereo vision, we previously developed stereo X-ray imaging methods that operate with only two X-ray projections, enabling the 3D reconstruction of point and line fiducial markers at significantly faster temporal resolutions. <b>Methods:</b> Building on our prior work, this paper demonstrates the use of stereo X-ray techniques for 3D reconstruction of sharp object corners, eliminating the need for internal fiducial markers. This is particularly relevant for deformation measurement of manufactured components under load. Additionally, we explore model training using synthetic data when annotated real data is unavailable. <b>Results:</b> We show that the proposed method can reliably reconstruct sharp corners in 3D using only two X-ray projections. The results confirm the method's applicability to real-world stereo X-ray images without relying on annotated real training datasets. <b>Conclusions:</b> Our approach enables stereo X-ray 3D reconstruction using synthetic training data that mimics key characteristics of real data, thereby expanding the method's applicability in scenarios with limited training resources.</p>","PeriodicalId":51330,"journal":{"name":"Tomography","volume":"11 8","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2025-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12390524/pdf/","citationCount":"0","resultStr":"{\"title\":\"Imaging on the Edge: Mapping Object Corners and Edges with Stereo X-Ray Tomography.\",\"authors\":\"Zhenduo Shang, Thomas Blumensath\",\"doi\":\"10.3390/tomography11080084\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><b>Background/Objectives:</b> X-ray computed tomography (XCT) is a powerful tool for volumetric imaging, where three-dimensional (3D) images are generated from a large number of individual X-ray projection images. However, collecting the required number of low-noise projection images is time-consuming, limiting its applicability to scenarios requiring high temporal resolution, such as the study of dynamic processes. Inspired by stereo vision, we previously developed stereo X-ray imaging methods that operate with only two X-ray projections, enabling the 3D reconstruction of point and line fiducial markers at significantly faster temporal resolutions. <b>Methods:</b> Building on our prior work, this paper demonstrates the use of stereo X-ray techniques for 3D reconstruction of sharp object corners, eliminating the need for internal fiducial markers. This is particularly relevant for deformation measurement of manufactured components under load. Additionally, we explore model training using synthetic data when annotated real data is unavailable. <b>Results:</b> We show that the proposed method can reliably reconstruct sharp corners in 3D using only two X-ray projections. The results confirm the method's applicability to real-world stereo X-ray images without relying on annotated real training datasets. <b>Conclusions:</b> Our approach enables stereo X-ray 3D reconstruction using synthetic training data that mimics key characteristics of real data, thereby expanding the method's applicability in scenarios with limited training resources.</p>\",\"PeriodicalId\":51330,\"journal\":{\"name\":\"Tomography\",\"volume\":\"11 8\",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2025-07-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12390524/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tomography\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3390/tomography11080084\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tomography","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/tomography11080084","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

摘要

背景/目的:x射线计算机断层扫描(XCT)是体积成像的强大工具,其中三维(3D)图像是由大量单独的x射线投影图像生成的。然而,收集所需数量的低噪声投影图像是耗时的,限制了其适用于需要高时间分辨率的场景,例如动态过程的研究。受立体视觉的启发,我们之前开发了仅使用两个x射线投影的立体x射线成像方法,从而能够以更快的时间分辨率对点和线基准标记进行3D重建。方法:基于我们之前的工作,本文演示了使用立体x射线技术进行尖锐物体角的三维重建,消除了对内部基准标记的需要。这尤其适用于制造部件在载荷作用下的变形测量。此外,我们探索在没有带注释的真实数据时使用合成数据进行模型训练。结果表明,该方法仅使用两个x射线投影即可可靠地重建三维尖角。结果证实了该方法适用于真实的立体x射线图像,而不依赖于带注释的真实训练数据集。结论:我们的方法使用模拟真实数据关键特征的合成训练数据实现了立体x射线三维重建,从而扩大了该方法在训练资源有限的场景中的适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Imaging on the Edge: Mapping Object Corners and Edges with Stereo X-Ray Tomography.

Background/Objectives: X-ray computed tomography (XCT) is a powerful tool for volumetric imaging, where three-dimensional (3D) images are generated from a large number of individual X-ray projection images. However, collecting the required number of low-noise projection images is time-consuming, limiting its applicability to scenarios requiring high temporal resolution, such as the study of dynamic processes. Inspired by stereo vision, we previously developed stereo X-ray imaging methods that operate with only two X-ray projections, enabling the 3D reconstruction of point and line fiducial markers at significantly faster temporal resolutions. Methods: Building on our prior work, this paper demonstrates the use of stereo X-ray techniques for 3D reconstruction of sharp object corners, eliminating the need for internal fiducial markers. This is particularly relevant for deformation measurement of manufactured components under load. Additionally, we explore model training using synthetic data when annotated real data is unavailable. Results: We show that the proposed method can reliably reconstruct sharp corners in 3D using only two X-ray projections. The results confirm the method's applicability to real-world stereo X-ray images without relying on annotated real training datasets. Conclusions: Our approach enables stereo X-ray 3D reconstruction using synthetic training data that mimics key characteristics of real data, thereby expanding the method's applicability in scenarios with limited training resources.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Tomography
Tomography Medicine-Radiology, Nuclear Medicine and Imaging
CiteScore
2.70
自引率
10.50%
发文量
222
期刊介绍: TomographyTM publishes basic (technical and pre-clinical) and clinical scientific articles which involve the advancement of imaging technologies. Tomography encompasses studies that use single or multiple imaging modalities including for example CT, US, PET, SPECT, MR and hyperpolarization technologies, as well as optical modalities (i.e. bioluminescence, photoacoustic, endomicroscopy, fiber optic imaging and optical computed tomography) in basic sciences, engineering, preclinical and clinical medicine. Tomography also welcomes studies involving exploration and refinement of contrast mechanisms and image-derived metrics within and across modalities toward the development of novel imaging probes for image-based feedback and intervention. The use of imaging in biology and medicine provides unparalleled opportunities to noninvasively interrogate tissues to obtain real-time dynamic and quantitative information required for diagnosis and response to interventions and to follow evolving pathological conditions. As multi-modal studies and the complexities of imaging technologies themselves are ever increasing to provide advanced information to scientists and clinicians. Tomography provides a unique publication venue allowing investigators the opportunity to more precisely communicate integrated findings related to the diverse and heterogeneous features associated with underlying anatomical, physiological, functional, metabolic and molecular genetic activities of normal and diseased tissue. Thus Tomography publishes peer-reviewed articles which involve the broad use of imaging of any tissue and disease type including both preclinical and clinical investigations. In addition, hardware/software along with chemical and molecular probe advances are welcome as they are deemed to significantly contribute towards the long-term goal of improving the overall impact of imaging on scientific and clinical discovery.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信