基于Worley-Perlin扩散的合成数据生成用于不平衡CT数据集的蛛网膜下腔出血检测。

IF 2.3 3区 医学 Q3 ENGINEERING, BIOMEDICAL
Zhongyang Lu, Tao Hu, Masahiro Oda, Yutaro Fuse, Ryuta Saito, Masahiro Jinzaki, Kensaku Mori
{"title":"基于Worley-Perlin扩散的合成数据生成用于不平衡CT数据集的蛛网膜下腔出血检测。","authors":"Zhongyang Lu, Tao Hu, Masahiro Oda, Yutaro Fuse, Ryuta Saito, Masahiro Jinzaki, Kensaku Mori","doi":"10.1007/s11548-025-03482-2","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>In this paper, we propose a novel generative model to produce high-quality SAH samples, enhancing SAH CT detection performance in imbalanced datasets. Previous methods, such as cost-sensitive learning and previous diffusion models, suffer from overfitting or noise-induced distortion, limiting their effectiveness. Accurate SAH sample generation is crucial for better detection.</p><p><strong>Methods: </strong>We propose the Worley-Perlin Diffusion Model (WPDM), leveraging Worley-Perlin noise to synthesize diverse, high-quality SAH images. WPDM addresses limitations of Gaussian noise (homogeneity) and Simplex noise (distortion), enhancing robustness for generating SAH images. Additionally, <math><msub><mtext>WPDM</mtext> <mtext>Fast</mtext></msub> </math> optimizes generation speed without compromising quality.</p><p><strong>Results: </strong>WPDM effectively improved classification accuracy in datasets with varying imbalance ratios. Notably, a classifier trained with WPDM-generated samples achieved an F1-score of 0.857 on a 1:36 imbalance ratio, surpassing the state of the art by 2.3 percentage points.</p><p><strong>Conclusion: </strong>WPDM overcomes the limitations of Gaussian and Simplex noise-based models, generating high-quality, realistic SAH images. It significantly enhances classification performance in imbalanced settings, providing a robust solution for SAH CT detection.</p>","PeriodicalId":51251,"journal":{"name":"International Journal of Computer Assisted Radiology and Surgery","volume":" ","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synthetic data generation with Worley-Perlin diffusion for robust subarachnoid hemorrhage detection in imbalanced CT Datasets.\",\"authors\":\"Zhongyang Lu, Tao Hu, Masahiro Oda, Yutaro Fuse, Ryuta Saito, Masahiro Jinzaki, Kensaku Mori\",\"doi\":\"10.1007/s11548-025-03482-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>In this paper, we propose a novel generative model to produce high-quality SAH samples, enhancing SAH CT detection performance in imbalanced datasets. Previous methods, such as cost-sensitive learning and previous diffusion models, suffer from overfitting or noise-induced distortion, limiting their effectiveness. Accurate SAH sample generation is crucial for better detection.</p><p><strong>Methods: </strong>We propose the Worley-Perlin Diffusion Model (WPDM), leveraging Worley-Perlin noise to synthesize diverse, high-quality SAH images. WPDM addresses limitations of Gaussian noise (homogeneity) and Simplex noise (distortion), enhancing robustness for generating SAH images. Additionally, <math><msub><mtext>WPDM</mtext> <mtext>Fast</mtext></msub> </math> optimizes generation speed without compromising quality.</p><p><strong>Results: </strong>WPDM effectively improved classification accuracy in datasets with varying imbalance ratios. Notably, a classifier trained with WPDM-generated samples achieved an F1-score of 0.857 on a 1:36 imbalance ratio, surpassing the state of the art by 2.3 percentage points.</p><p><strong>Conclusion: </strong>WPDM overcomes the limitations of Gaussian and Simplex noise-based models, generating high-quality, realistic SAH images. It significantly enhances classification performance in imbalanced settings, providing a robust solution for SAH CT detection.</p>\",\"PeriodicalId\":51251,\"journal\":{\"name\":\"International Journal of Computer Assisted Radiology and Surgery\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Computer Assisted Radiology and Surgery\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s11548-025-03482-2\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computer Assisted Radiology and Surgery","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11548-025-03482-2","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

目的:在本文中,我们提出了一种新的生成模型来生成高质量的SAH样本,提高SAH CT在不平衡数据集中的检测性能。先前的方法,如代价敏感学习和先前的扩散模型,存在过拟合或噪声引起的失真,限制了它们的有效性。准确的SAH样品生成对于更好的检测至关重要。方法:我们提出了Worley-Perlin扩散模型(WPDM),利用Worley-Perlin噪声合成多种高质量的SAH图像。WPDM解决了高斯噪声(均匀性)和单纯形噪声(失真)的局限性,增强了生成SAH图像的鲁棒性。此外,WPDM Fast在不影响质量的情况下优化生成速度。结果:WPDM有效提高了不同失衡比数据集的分类准确率。值得注意的是,使用wpdm生成的样本训练的分类器在1:36的不平衡比下获得了f1得分0.857,超过了目前的水平2.3个百分点。结论:WPDM克服了高斯和单纯形噪声模型的局限性,生成了高质量、逼真的SAH图像。它显著提高了在不平衡设置下的分类性能,为SAH CT检测提供了一个鲁棒的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Synthetic data generation with Worley-Perlin diffusion for robust subarachnoid hemorrhage detection in imbalanced CT Datasets.

Purpose: In this paper, we propose a novel generative model to produce high-quality SAH samples, enhancing SAH CT detection performance in imbalanced datasets. Previous methods, such as cost-sensitive learning and previous diffusion models, suffer from overfitting or noise-induced distortion, limiting their effectiveness. Accurate SAH sample generation is crucial for better detection.

Methods: We propose the Worley-Perlin Diffusion Model (WPDM), leveraging Worley-Perlin noise to synthesize diverse, high-quality SAH images. WPDM addresses limitations of Gaussian noise (homogeneity) and Simplex noise (distortion), enhancing robustness for generating SAH images. Additionally, WPDM Fast optimizes generation speed without compromising quality.

Results: WPDM effectively improved classification accuracy in datasets with varying imbalance ratios. Notably, a classifier trained with WPDM-generated samples achieved an F1-score of 0.857 on a 1:36 imbalance ratio, surpassing the state of the art by 2.3 percentage points.

Conclusion: WPDM overcomes the limitations of Gaussian and Simplex noise-based models, generating high-quality, realistic SAH images. It significantly enhances classification performance in imbalanced settings, providing a robust solution for SAH CT detection.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Computer Assisted Radiology and Surgery
International Journal of Computer Assisted Radiology and Surgery ENGINEERING, BIOMEDICAL-RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
CiteScore
5.90
自引率
6.70%
发文量
243
审稿时长
6-12 weeks
期刊介绍: The International Journal for Computer Assisted Radiology and Surgery (IJCARS) is a peer-reviewed journal that provides a platform for closing the gap between medical and technical disciplines, and encourages interdisciplinary research and development activities in an international environment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信