Zhongyang Lu, Tao Hu, Masahiro Oda, Yutaro Fuse, Ryuta Saito, Masahiro Jinzaki, Kensaku Mori
{"title":"基于Worley-Perlin扩散的合成数据生成用于不平衡CT数据集的蛛网膜下腔出血检测。","authors":"Zhongyang Lu, Tao Hu, Masahiro Oda, Yutaro Fuse, Ryuta Saito, Masahiro Jinzaki, Kensaku Mori","doi":"10.1007/s11548-025-03482-2","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>In this paper, we propose a novel generative model to produce high-quality SAH samples, enhancing SAH CT detection performance in imbalanced datasets. Previous methods, such as cost-sensitive learning and previous diffusion models, suffer from overfitting or noise-induced distortion, limiting their effectiveness. Accurate SAH sample generation is crucial for better detection.</p><p><strong>Methods: </strong>We propose the Worley-Perlin Diffusion Model (WPDM), leveraging Worley-Perlin noise to synthesize diverse, high-quality SAH images. WPDM addresses limitations of Gaussian noise (homogeneity) and Simplex noise (distortion), enhancing robustness for generating SAH images. Additionally, <math><msub><mtext>WPDM</mtext> <mtext>Fast</mtext></msub> </math> optimizes generation speed without compromising quality.</p><p><strong>Results: </strong>WPDM effectively improved classification accuracy in datasets with varying imbalance ratios. Notably, a classifier trained with WPDM-generated samples achieved an F1-score of 0.857 on a 1:36 imbalance ratio, surpassing the state of the art by 2.3 percentage points.</p><p><strong>Conclusion: </strong>WPDM overcomes the limitations of Gaussian and Simplex noise-based models, generating high-quality, realistic SAH images. It significantly enhances classification performance in imbalanced settings, providing a robust solution for SAH CT detection.</p>","PeriodicalId":51251,"journal":{"name":"International Journal of Computer Assisted Radiology and Surgery","volume":" ","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synthetic data generation with Worley-Perlin diffusion for robust subarachnoid hemorrhage detection in imbalanced CT Datasets.\",\"authors\":\"Zhongyang Lu, Tao Hu, Masahiro Oda, Yutaro Fuse, Ryuta Saito, Masahiro Jinzaki, Kensaku Mori\",\"doi\":\"10.1007/s11548-025-03482-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>In this paper, we propose a novel generative model to produce high-quality SAH samples, enhancing SAH CT detection performance in imbalanced datasets. Previous methods, such as cost-sensitive learning and previous diffusion models, suffer from overfitting or noise-induced distortion, limiting their effectiveness. Accurate SAH sample generation is crucial for better detection.</p><p><strong>Methods: </strong>We propose the Worley-Perlin Diffusion Model (WPDM), leveraging Worley-Perlin noise to synthesize diverse, high-quality SAH images. WPDM addresses limitations of Gaussian noise (homogeneity) and Simplex noise (distortion), enhancing robustness for generating SAH images. Additionally, <math><msub><mtext>WPDM</mtext> <mtext>Fast</mtext></msub> </math> optimizes generation speed without compromising quality.</p><p><strong>Results: </strong>WPDM effectively improved classification accuracy in datasets with varying imbalance ratios. Notably, a classifier trained with WPDM-generated samples achieved an F1-score of 0.857 on a 1:36 imbalance ratio, surpassing the state of the art by 2.3 percentage points.</p><p><strong>Conclusion: </strong>WPDM overcomes the limitations of Gaussian and Simplex noise-based models, generating high-quality, realistic SAH images. It significantly enhances classification performance in imbalanced settings, providing a robust solution for SAH CT detection.</p>\",\"PeriodicalId\":51251,\"journal\":{\"name\":\"International Journal of Computer Assisted Radiology and Surgery\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Computer Assisted Radiology and Surgery\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s11548-025-03482-2\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computer Assisted Radiology and Surgery","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11548-025-03482-2","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Synthetic data generation with Worley-Perlin diffusion for robust subarachnoid hemorrhage detection in imbalanced CT Datasets.
Purpose: In this paper, we propose a novel generative model to produce high-quality SAH samples, enhancing SAH CT detection performance in imbalanced datasets. Previous methods, such as cost-sensitive learning and previous diffusion models, suffer from overfitting or noise-induced distortion, limiting their effectiveness. Accurate SAH sample generation is crucial for better detection.
Methods: We propose the Worley-Perlin Diffusion Model (WPDM), leveraging Worley-Perlin noise to synthesize diverse, high-quality SAH images. WPDM addresses limitations of Gaussian noise (homogeneity) and Simplex noise (distortion), enhancing robustness for generating SAH images. Additionally, optimizes generation speed without compromising quality.
Results: WPDM effectively improved classification accuracy in datasets with varying imbalance ratios. Notably, a classifier trained with WPDM-generated samples achieved an F1-score of 0.857 on a 1:36 imbalance ratio, surpassing the state of the art by 2.3 percentage points.
Conclusion: WPDM overcomes the limitations of Gaussian and Simplex noise-based models, generating high-quality, realistic SAH images. It significantly enhances classification performance in imbalanced settings, providing a robust solution for SAH CT detection.
期刊介绍:
The International Journal for Computer Assisted Radiology and Surgery (IJCARS) is a peer-reviewed journal that provides a platform for closing the gap between medical and technical disciplines, and encourages interdisciplinary research and development activities in an international environment.