Tinghao Li, Kunyao Zhu, Hang Tong, Yan Sun, Junlong Zhu, Zijia Qin, Junrui Chen, Linfeng Wu, Xiaoyu Zhang, Aimin Wang, Xin Gou, Hubin Yin, Weiyang He
{"title":"癌症相关成纤维细胞衍生的CXCL14通过增强膀胱癌的核苷酸切除修复驱动顺铂化疗耐药。","authors":"Tinghao Li, Kunyao Zhu, Hang Tong, Yan Sun, Junlong Zhu, Zijia Qin, Junrui Chen, Linfeng Wu, Xiaoyu Zhang, Aimin Wang, Xin Gou, Hubin Yin, Weiyang He","doi":"10.1186/s13046-025-03487-4","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>A significant challenge in bladder cancer treatment is primary chemoresistance, in which cancer-associated fibroblasts (CAFs) in the tumor microenvironment (TME) play a pivotal role. While the contributions of CAFs to tumor progression and drug resistance are well established, the precise molecular mechanisms by which they induce chemoresistance remain unclear. A comprehensive understanding of the effect of TME modulation-particularly through CAFs-on the chemotherapeutic response is crucial for developing effective strategies to overcome chemoresistance and improve patient survival.</p><p><strong>Methods: </strong>Primary fibroblasts were isolated from paired clinical samples of bladder cancer tissues and adjacent normal tissues to identify key CAF-derived secretory factors. Bioinformatics analysis, semiquantitative RT‒qPCR, and dual-luciferase reporter assays were subsequently used to investigate the functional role and mechanistic basis of CXCL14 in chemoresistance. The therapeutic relevance of these findings was further evaluated through in vitro and in vivo models, including ex vivo patient-derived organoid (PDO) models, by assessing cisplatin sensitivity and validating therapeutic targeting of the CXCL14-CCR7-STAT3 axis with small molecule inhibitors.</p><p><strong>Results: </strong>Compared to normal fibroblasts and CAFs from nonchemoresistance groups, CAFs derived from cisplatin-resistant patients demonstrated significantly greater paracrine-mediated induction of chemoresistance. Mechanistically, CAF-secreted CXCL14 engaged CCR7 on bladder cancer cells, triggering STAT3 phosphorylation and consequently upregulating the DNA repair gene ERCC4 to promote cisplatin resistance. In vivo validation confirmed that pharmacological CCR7 or STAT3 inhibition markedly reversed chemoresistance and potentiated cisplatin-induced tumor cell death. Notably, STAT3 activation mediated the overexpression of the glycolytic enzymes HK2 and LDHA, resulting in greater glycolytic flux in resistant cells. This metabolic reprogramming further facilitated the transdifferentiation of normal fibroblasts into CXCL14-secreting CAFs, establishing a self-reinforcing feedback loop that sustains chemoresistance.</p><p><strong>Conclusion: </strong>The CXCL14/CCR7/STAT3 axis critically mediates cisplatin resistance in bladder cancer through dual modulation of DNA repair and glycolytic metabolism. Therapeutic cotargeting of this pathway with CCR7 or STAT3 inhibitors combined with cisplatin represents a promising strategy to overcome chemoresistance and improve clinical outcomes.</p>","PeriodicalId":50199,"journal":{"name":"Journal of Experimental & Clinical Cancer Research","volume":"44 1","pages":"265"},"PeriodicalIF":12.8000,"publicationDate":"2025-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12406535/pdf/","citationCount":"0","resultStr":"{\"title\":\"Cancer-associated fibroblast derived CXCL14 drives cisplatin chemoresistance by enhancing nucleotide excision repair in bladder cancer.\",\"authors\":\"Tinghao Li, Kunyao Zhu, Hang Tong, Yan Sun, Junlong Zhu, Zijia Qin, Junrui Chen, Linfeng Wu, Xiaoyu Zhang, Aimin Wang, Xin Gou, Hubin Yin, Weiyang He\",\"doi\":\"10.1186/s13046-025-03487-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>A significant challenge in bladder cancer treatment is primary chemoresistance, in which cancer-associated fibroblasts (CAFs) in the tumor microenvironment (TME) play a pivotal role. While the contributions of CAFs to tumor progression and drug resistance are well established, the precise molecular mechanisms by which they induce chemoresistance remain unclear. A comprehensive understanding of the effect of TME modulation-particularly through CAFs-on the chemotherapeutic response is crucial for developing effective strategies to overcome chemoresistance and improve patient survival.</p><p><strong>Methods: </strong>Primary fibroblasts were isolated from paired clinical samples of bladder cancer tissues and adjacent normal tissues to identify key CAF-derived secretory factors. Bioinformatics analysis, semiquantitative RT‒qPCR, and dual-luciferase reporter assays were subsequently used to investigate the functional role and mechanistic basis of CXCL14 in chemoresistance. The therapeutic relevance of these findings was further evaluated through in vitro and in vivo models, including ex vivo patient-derived organoid (PDO) models, by assessing cisplatin sensitivity and validating therapeutic targeting of the CXCL14-CCR7-STAT3 axis with small molecule inhibitors.</p><p><strong>Results: </strong>Compared to normal fibroblasts and CAFs from nonchemoresistance groups, CAFs derived from cisplatin-resistant patients demonstrated significantly greater paracrine-mediated induction of chemoresistance. Mechanistically, CAF-secreted CXCL14 engaged CCR7 on bladder cancer cells, triggering STAT3 phosphorylation and consequently upregulating the DNA repair gene ERCC4 to promote cisplatin resistance. In vivo validation confirmed that pharmacological CCR7 or STAT3 inhibition markedly reversed chemoresistance and potentiated cisplatin-induced tumor cell death. Notably, STAT3 activation mediated the overexpression of the glycolytic enzymes HK2 and LDHA, resulting in greater glycolytic flux in resistant cells. This metabolic reprogramming further facilitated the transdifferentiation of normal fibroblasts into CXCL14-secreting CAFs, establishing a self-reinforcing feedback loop that sustains chemoresistance.</p><p><strong>Conclusion: </strong>The CXCL14/CCR7/STAT3 axis critically mediates cisplatin resistance in bladder cancer through dual modulation of DNA repair and glycolytic metabolism. Therapeutic cotargeting of this pathway with CCR7 or STAT3 inhibitors combined with cisplatin represents a promising strategy to overcome chemoresistance and improve clinical outcomes.</p>\",\"PeriodicalId\":50199,\"journal\":{\"name\":\"Journal of Experimental & Clinical Cancer Research\",\"volume\":\"44 1\",\"pages\":\"265\"},\"PeriodicalIF\":12.8000,\"publicationDate\":\"2025-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12406535/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Experimental & Clinical Cancer Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s13046-025-03487-4\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Experimental & Clinical Cancer Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13046-025-03487-4","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
Cancer-associated fibroblast derived CXCL14 drives cisplatin chemoresistance by enhancing nucleotide excision repair in bladder cancer.
Background: A significant challenge in bladder cancer treatment is primary chemoresistance, in which cancer-associated fibroblasts (CAFs) in the tumor microenvironment (TME) play a pivotal role. While the contributions of CAFs to tumor progression and drug resistance are well established, the precise molecular mechanisms by which they induce chemoresistance remain unclear. A comprehensive understanding of the effect of TME modulation-particularly through CAFs-on the chemotherapeutic response is crucial for developing effective strategies to overcome chemoresistance and improve patient survival.
Methods: Primary fibroblasts were isolated from paired clinical samples of bladder cancer tissues and adjacent normal tissues to identify key CAF-derived secretory factors. Bioinformatics analysis, semiquantitative RT‒qPCR, and dual-luciferase reporter assays were subsequently used to investigate the functional role and mechanistic basis of CXCL14 in chemoresistance. The therapeutic relevance of these findings was further evaluated through in vitro and in vivo models, including ex vivo patient-derived organoid (PDO) models, by assessing cisplatin sensitivity and validating therapeutic targeting of the CXCL14-CCR7-STAT3 axis with small molecule inhibitors.
Results: Compared to normal fibroblasts and CAFs from nonchemoresistance groups, CAFs derived from cisplatin-resistant patients demonstrated significantly greater paracrine-mediated induction of chemoresistance. Mechanistically, CAF-secreted CXCL14 engaged CCR7 on bladder cancer cells, triggering STAT3 phosphorylation and consequently upregulating the DNA repair gene ERCC4 to promote cisplatin resistance. In vivo validation confirmed that pharmacological CCR7 or STAT3 inhibition markedly reversed chemoresistance and potentiated cisplatin-induced tumor cell death. Notably, STAT3 activation mediated the overexpression of the glycolytic enzymes HK2 and LDHA, resulting in greater glycolytic flux in resistant cells. This metabolic reprogramming further facilitated the transdifferentiation of normal fibroblasts into CXCL14-secreting CAFs, establishing a self-reinforcing feedback loop that sustains chemoresistance.
Conclusion: The CXCL14/CCR7/STAT3 axis critically mediates cisplatin resistance in bladder cancer through dual modulation of DNA repair and glycolytic metabolism. Therapeutic cotargeting of this pathway with CCR7 or STAT3 inhibitors combined with cisplatin represents a promising strategy to overcome chemoresistance and improve clinical outcomes.
期刊介绍:
The Journal of Experimental & Clinical Cancer Research is an esteemed peer-reviewed publication that focuses on cancer research, encompassing everything from fundamental discoveries to practical applications.
We welcome submissions that showcase groundbreaking advancements in the field of cancer research, especially those that bridge the gap between laboratory findings and clinical implementation. Our goal is to foster a deeper understanding of cancer, improve prevention and detection strategies, facilitate accurate diagnosis, and enhance treatment options.
We are particularly interested in manuscripts that shed light on the mechanisms behind the development and progression of cancer, including metastasis. Additionally, we encourage submissions that explore molecular alterations or biomarkers that can help predict the efficacy of different treatments or identify drug resistance. Translational research related to targeted therapies, personalized medicine, tumor immunotherapy, and innovative approaches applicable to clinical investigations are also of great interest to us.
We provide a platform for the dissemination of large-scale molecular characterizations of human tumors and encourage researchers to share their insights, discoveries, and methodologies with the wider scientific community.
By publishing high-quality research articles, reviews, and commentaries, the Journal of Experimental & Clinical Cancer Research strives to contribute to the continuous improvement of cancer care and make a meaningful impact on patients' lives.