不规则空间域离散数据的非参数密度估计:一种基于似然的二元惩罚样条平滑方法。

IF 0.9 4区 数学 Q3 STATISTICS & PROBABILITY
Kunal Das, Shan Yu, Guannan Wang, Li Wang
{"title":"不规则空间域离散数据的非参数密度估计:一种基于似然的二元惩罚样条平滑方法。","authors":"Kunal Das, Shan Yu, Guannan Wang, Li Wang","doi":"10.1080/10485252.2025.2497541","DOIUrl":null,"url":null,"abstract":"<p><p>Accurately estimating data density is crucial for making informed decisions and modeling in various fields. This paper presents a novel nonparametric density estimation procedure that utilizes bivariate penalized spline smoothing over triangulation for data scattered over irregular spatial domains. Our likelihood-based approach incorporates a regularization term addressing the roughness of the logarithm of density using a second-order differential operator. We establish the asymptotic convergence rate of the proposed density estimator in terms of the <math> <msub><mrow><mi>L</mi></mrow> <mrow><mn>2</mn></mrow> </msub> </math> and <math> <msub><mrow><mi>L</mi></mrow> <mrow><mo>∞</mo></mrow> </msub> </math> norms under mild natural conditions, providing a solid theoretical foundation. The proposed method demonstrates superior efficiency and flexibility with enhanced smoothness and continuity across the domain compared to existing techniques. We validate our approach through comprehensive simulation studies and apply it to real-world motor vehicle theft data from Portland, Oregon, illustrating its practical advantages in data analysis on spatial domains.</p>","PeriodicalId":50112,"journal":{"name":"Journal of Nonparametric Statistics","volume":" ","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2025-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12393688/pdf/","citationCount":"0","resultStr":"{\"title\":\"Nonparametric Density Estimation for Data Scattered on Irregular Spatial Domains: A Likelihood-Based Approach Using Bivariate Penalized Spline Smoothing.\",\"authors\":\"Kunal Das, Shan Yu, Guannan Wang, Li Wang\",\"doi\":\"10.1080/10485252.2025.2497541\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Accurately estimating data density is crucial for making informed decisions and modeling in various fields. This paper presents a novel nonparametric density estimation procedure that utilizes bivariate penalized spline smoothing over triangulation for data scattered over irregular spatial domains. Our likelihood-based approach incorporates a regularization term addressing the roughness of the logarithm of density using a second-order differential operator. We establish the asymptotic convergence rate of the proposed density estimator in terms of the <math> <msub><mrow><mi>L</mi></mrow> <mrow><mn>2</mn></mrow> </msub> </math> and <math> <msub><mrow><mi>L</mi></mrow> <mrow><mo>∞</mo></mrow> </msub> </math> norms under mild natural conditions, providing a solid theoretical foundation. The proposed method demonstrates superior efficiency and flexibility with enhanced smoothness and continuity across the domain compared to existing techniques. We validate our approach through comprehensive simulation studies and apply it to real-world motor vehicle theft data from Portland, Oregon, illustrating its practical advantages in data analysis on spatial domains.</p>\",\"PeriodicalId\":50112,\"journal\":{\"name\":\"Journal of Nonparametric Statistics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2025-04-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12393688/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Nonparametric Statistics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1080/10485252.2025.2497541\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nonparametric Statistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/10485252.2025.2497541","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

准确估计数据密度对于在各个领域做出明智的决策和建模至关重要。本文提出了一种新的非参数密度估计方法,该方法利用二元惩罚样条平滑而不是三角剖分来处理分散在不规则空间域上的数据。我们基于似然的方法包含一个正则化项,使用二阶微分算子处理密度对数的粗糙度。在温和的自然条件下,我们用l2范数和L∞范数建立了所提密度估计量的渐近收敛速率,提供了坚实的理论基础。与现有方法相比,该方法具有更高的效率和灵活性,并具有更强的平滑性和跨域连续性。我们通过全面的模拟研究验证了我们的方法,并将其应用于来自俄勒冈州波特兰市的真实机动车辆盗窃数据,说明了其在空间域数据分析中的实际优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Nonparametric Density Estimation for Data Scattered on Irregular Spatial Domains: A Likelihood-Based Approach Using Bivariate Penalized Spline Smoothing.

Accurately estimating data density is crucial for making informed decisions and modeling in various fields. This paper presents a novel nonparametric density estimation procedure that utilizes bivariate penalized spline smoothing over triangulation for data scattered over irregular spatial domains. Our likelihood-based approach incorporates a regularization term addressing the roughness of the logarithm of density using a second-order differential operator. We establish the asymptotic convergence rate of the proposed density estimator in terms of the L 2 and L norms under mild natural conditions, providing a solid theoretical foundation. The proposed method demonstrates superior efficiency and flexibility with enhanced smoothness and continuity across the domain compared to existing techniques. We validate our approach through comprehensive simulation studies and apply it to real-world motor vehicle theft data from Portland, Oregon, illustrating its practical advantages in data analysis on spatial domains.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Nonparametric Statistics
Journal of Nonparametric Statistics 数学-统计学与概率论
CiteScore
1.50
自引率
8.30%
发文量
42
审稿时长
6-12 weeks
期刊介绍: Journal of Nonparametric Statistics provides a medium for the publication of research and survey work in nonparametric statistics and related areas. The scope includes, but is not limited to the following topics: Nonparametric modeling, Nonparametric function estimation, Rank and other robust and distribution-free procedures, Resampling methods, Lack-of-fit testing, Multivariate analysis, Inference with high-dimensional data, Dimension reduction and variable selection, Methods for errors in variables, missing, censored, and other incomplete data structures, Inference of stochastic processes, Sample surveys, Time series analysis, Longitudinal and functional data analysis, Nonparametric Bayes methods and decision procedures, Semiparametric models and procedures, Statistical methods for imaging and tomography, Statistical inverse problems, Financial statistics and econometrics, Bioinformatics and comparative genomics, Statistical algorithms and machine learning. Both the theory and applications of nonparametric statistics are covered in the journal. Research applying nonparametric methods to medicine, engineering, technology, science and humanities is welcomed, provided the novelty and quality level are of the highest order. Authors are encouraged to submit supplementary technical arguments, computer code, data analysed in the paper or any additional information for online publication along with the published paper.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信