{"title":"避免代理悖论:评估假设的经验框架。","authors":"Emily Hsiao, Lu Tian, Layla Parast","doi":"10.1080/10485252.2025.2498609","DOIUrl":null,"url":null,"abstract":"<p><p>The use of surrogate markers to replace a primary outcome in clinical trials has the potential to allow earlier decisions about the effectiveness of a treatment when a direct measurement of the primary outcome is difficult to obtain. However, the surrogate paradox, which occurs when a treatment has a positive effect on the surrogate marker but a negative effect on the primary outcome, may lead researchers to make incorrect conclusions about the treatment benefit. In this paper, we propose a formal nonparametric framework to empirically examine and test assumptions that ensure avoidance of the surrogate paradox. For each assumption, we propose a nonparametric hypothesis test, formally derive the properties of the test, and analyze its performance in finite samples in a variety of simulation settings. We apply our proposed testing framework to data from the the Diabetes Prevention Program clinical trial.</p>","PeriodicalId":50112,"journal":{"name":"Journal of Nonparametric Statistics","volume":" ","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2025-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12382359/pdf/","citationCount":"0","resultStr":"{\"title\":\"Avoiding the Surrogate Paradox: An Empirical Framework for Assessing Assumptions.\",\"authors\":\"Emily Hsiao, Lu Tian, Layla Parast\",\"doi\":\"10.1080/10485252.2025.2498609\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The use of surrogate markers to replace a primary outcome in clinical trials has the potential to allow earlier decisions about the effectiveness of a treatment when a direct measurement of the primary outcome is difficult to obtain. However, the surrogate paradox, which occurs when a treatment has a positive effect on the surrogate marker but a negative effect on the primary outcome, may lead researchers to make incorrect conclusions about the treatment benefit. In this paper, we propose a formal nonparametric framework to empirically examine and test assumptions that ensure avoidance of the surrogate paradox. For each assumption, we propose a nonparametric hypothesis test, formally derive the properties of the test, and analyze its performance in finite samples in a variety of simulation settings. We apply our proposed testing framework to data from the the Diabetes Prevention Program clinical trial.</p>\",\"PeriodicalId\":50112,\"journal\":{\"name\":\"Journal of Nonparametric Statistics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2025-05-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12382359/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Nonparametric Statistics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1080/10485252.2025.2498609\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nonparametric Statistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/10485252.2025.2498609","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
Avoiding the Surrogate Paradox: An Empirical Framework for Assessing Assumptions.
The use of surrogate markers to replace a primary outcome in clinical trials has the potential to allow earlier decisions about the effectiveness of a treatment when a direct measurement of the primary outcome is difficult to obtain. However, the surrogate paradox, which occurs when a treatment has a positive effect on the surrogate marker but a negative effect on the primary outcome, may lead researchers to make incorrect conclusions about the treatment benefit. In this paper, we propose a formal nonparametric framework to empirically examine and test assumptions that ensure avoidance of the surrogate paradox. For each assumption, we propose a nonparametric hypothesis test, formally derive the properties of the test, and analyze its performance in finite samples in a variety of simulation settings. We apply our proposed testing framework to data from the the Diabetes Prevention Program clinical trial.
期刊介绍:
Journal of Nonparametric Statistics provides a medium for the publication of research and survey work in nonparametric statistics and related areas. The scope includes, but is not limited to the following topics:
Nonparametric modeling,
Nonparametric function estimation,
Rank and other robust and distribution-free procedures,
Resampling methods,
Lack-of-fit testing,
Multivariate analysis,
Inference with high-dimensional data,
Dimension reduction and variable selection,
Methods for errors in variables, missing, censored, and other incomplete data structures,
Inference of stochastic processes,
Sample surveys,
Time series analysis,
Longitudinal and functional data analysis,
Nonparametric Bayes methods and decision procedures,
Semiparametric models and procedures,
Statistical methods for imaging and tomography,
Statistical inverse problems,
Financial statistics and econometrics,
Bioinformatics and comparative genomics,
Statistical algorithms and machine learning.
Both the theory and applications of nonparametric statistics are covered in the journal. Research applying nonparametric methods to medicine, engineering, technology, science and humanities is welcomed, provided the novelty and quality level are of the highest order.
Authors are encouraged to submit supplementary technical arguments, computer code, data analysed in the paper or any additional information for online publication along with the published paper.