{"title":"物理约束域的空间预测:北极海盐度数据的应用。","authors":"Bora Jin, Amy H Herring, David Dunson","doi":"10.1214/23-aoas1850","DOIUrl":null,"url":null,"abstract":"<p><p>In this paper we predict sea surface salinity (SSS) in the Arctic Ocean based on satellite measurements. SSS is a crucial indicator for ongoing changes in the Arctic Ocean and can offer important insights about climate change. We particularly focus on areas of water mistakenly flagged as ice by satellite algorithms. To remove bias in the retrieval of salinity near sea ice, the algorithms use conservative ice masks, which result in considerable loss of data. We aim to produce realistic SSS values for such regions to obtain more complete understanding about the SSS surface over the Arctic Ocean and benefit future applications that may require SSS measurements near edges of sea ice or coasts. We propose a class of scalable nonstationary processes that can handle large data from satellite products and complex geometries of the Arctic Ocean. Barrier overlap-removal acyclic directed graph GP (BORA-GP) constructs sparse directed acyclic graphs (DAGs) with neighbors conforming to barriers and boundaries, enabling characterization of dependence in constrained domains. The BORA-GP models produce more sensible SSS values in regions without satellite measurements and show improved performance in various constrained domains in simulation studies compared to state-of-the-art alternatives. An R package is available at https://github.com/jinbora0720/boraGP.</p>","PeriodicalId":50772,"journal":{"name":"Annals of Applied Statistics","volume":"18 2","pages":"1596-1617"},"PeriodicalIF":1.4000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12391905/pdf/","citationCount":"0","resultStr":"{\"title\":\"SPATIAL PREDICTIONS ON PHYSICALLY CONSTRAINED DOMAINS: APPLICATIONS TO ARCTIC SEA SALINITY DATA.\",\"authors\":\"Bora Jin, Amy H Herring, David Dunson\",\"doi\":\"10.1214/23-aoas1850\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In this paper we predict sea surface salinity (SSS) in the Arctic Ocean based on satellite measurements. SSS is a crucial indicator for ongoing changes in the Arctic Ocean and can offer important insights about climate change. We particularly focus on areas of water mistakenly flagged as ice by satellite algorithms. To remove bias in the retrieval of salinity near sea ice, the algorithms use conservative ice masks, which result in considerable loss of data. We aim to produce realistic SSS values for such regions to obtain more complete understanding about the SSS surface over the Arctic Ocean and benefit future applications that may require SSS measurements near edges of sea ice or coasts. We propose a class of scalable nonstationary processes that can handle large data from satellite products and complex geometries of the Arctic Ocean. Barrier overlap-removal acyclic directed graph GP (BORA-GP) constructs sparse directed acyclic graphs (DAGs) with neighbors conforming to barriers and boundaries, enabling characterization of dependence in constrained domains. The BORA-GP models produce more sensible SSS values in regions without satellite measurements and show improved performance in various constrained domains in simulation studies compared to state-of-the-art alternatives. An R package is available at https://github.com/jinbora0720/boraGP.</p>\",\"PeriodicalId\":50772,\"journal\":{\"name\":\"Annals of Applied Statistics\",\"volume\":\"18 2\",\"pages\":\"1596-1617\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12391905/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Applied Statistics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1214/23-aoas1850\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/4/5 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Applied Statistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1214/23-aoas1850","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/4/5 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
SPATIAL PREDICTIONS ON PHYSICALLY CONSTRAINED DOMAINS: APPLICATIONS TO ARCTIC SEA SALINITY DATA.
In this paper we predict sea surface salinity (SSS) in the Arctic Ocean based on satellite measurements. SSS is a crucial indicator for ongoing changes in the Arctic Ocean and can offer important insights about climate change. We particularly focus on areas of water mistakenly flagged as ice by satellite algorithms. To remove bias in the retrieval of salinity near sea ice, the algorithms use conservative ice masks, which result in considerable loss of data. We aim to produce realistic SSS values for such regions to obtain more complete understanding about the SSS surface over the Arctic Ocean and benefit future applications that may require SSS measurements near edges of sea ice or coasts. We propose a class of scalable nonstationary processes that can handle large data from satellite products and complex geometries of the Arctic Ocean. Barrier overlap-removal acyclic directed graph GP (BORA-GP) constructs sparse directed acyclic graphs (DAGs) with neighbors conforming to barriers and boundaries, enabling characterization of dependence in constrained domains. The BORA-GP models produce more sensible SSS values in regions without satellite measurements and show improved performance in various constrained domains in simulation studies compared to state-of-the-art alternatives. An R package is available at https://github.com/jinbora0720/boraGP.
期刊介绍:
Statistical research spans an enormous range from direct subject-matter collaborations to pure mathematical theory. The Annals of Applied Statistics, the newest journal from the IMS, is aimed at papers in the applied half of this range. Published quarterly in both print and electronic form, our goal is to provide a timely and unified forum for all areas of applied statistics.