E-TBI:使用机器学习预测外伤性脑损伤后可解释的结果。

IF 2.6 4区 医学 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Thu Ha Ngo, Minh Hieu Tran, Hoang Bach Nguyen, Van Nam Hoang, Thi Lan Le, Hai Vu, Trung Kien Tran, Huu Khanh Nguyen, Van Mao Can, Thanh Bac Nguyen, Thanh-Hai Tran
{"title":"E-TBI:使用机器学习预测外伤性脑损伤后可解释的结果。","authors":"Thu Ha Ngo, Minh Hieu Tran, Hoang Bach Nguyen, Van Nam Hoang, Thi Lan Le, Hai Vu, Trung Kien Tran, Huu Khanh Nguyen, Van Mao Can, Thanh Bac Nguyen, Thanh-Hai Tran","doi":"10.1007/s11517-025-03431-w","DOIUrl":null,"url":null,"abstract":"<p><p>Traumatic brain injury (TBI) is one of the most prevalent health conditions, with severity assessment serving as an initial step for management, prognosis, and targeted therapy. Existing studies on automated outcome prediction using machine learning (ML) often overlook the importance of TBI features in decision-making and the challenges posed by limited and imbalanced training data. Furthermore, many attempts have focused on quantitatively evaluating ML algorithms without explaining the decisions, making the outcomes difficult to interpret and apply for less-experienced doctors. This study presents a novel supportive tool, named E-TBI (explainable outcome prediction after TBI), designed with a user-friendly web-based interface to assist doctors in outcome prediction after TBI using machine learning. The tool is developed with the capability to visualize rules applied in the decision-making process. At the tool's core is a feature selection and classification module that receives multimodal data from TBI patients (demographic data, clinical data, laboratory test results, and CT findings). It then infers one of four TBI severity levels. This research investigates various machine learning models and feature selection techniques, ultimately identifying the optimal combination of gradient boosting machine and random forest for the task, which we refer to as GBMRF. This method enabled us to identify a small set of essential features, reducing patient testing costs by 35%, while achieving the highest accuracy rates of 88.82% and 89.78% on two datasets (a public TBI dataset and our self-collected dataset, TBI_MH103). Classification modules are available at https://github.com/auverngo110/Traumatic_Brain_Injury_103 .</p>","PeriodicalId":49840,"journal":{"name":"Medical & Biological Engineering & Computing","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"E-TBI: explainable outcome prediction after traumatic brain injury using machine learning.\",\"authors\":\"Thu Ha Ngo, Minh Hieu Tran, Hoang Bach Nguyen, Van Nam Hoang, Thi Lan Le, Hai Vu, Trung Kien Tran, Huu Khanh Nguyen, Van Mao Can, Thanh Bac Nguyen, Thanh-Hai Tran\",\"doi\":\"10.1007/s11517-025-03431-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Traumatic brain injury (TBI) is one of the most prevalent health conditions, with severity assessment serving as an initial step for management, prognosis, and targeted therapy. Existing studies on automated outcome prediction using machine learning (ML) often overlook the importance of TBI features in decision-making and the challenges posed by limited and imbalanced training data. Furthermore, many attempts have focused on quantitatively evaluating ML algorithms without explaining the decisions, making the outcomes difficult to interpret and apply for less-experienced doctors. This study presents a novel supportive tool, named E-TBI (explainable outcome prediction after TBI), designed with a user-friendly web-based interface to assist doctors in outcome prediction after TBI using machine learning. The tool is developed with the capability to visualize rules applied in the decision-making process. At the tool's core is a feature selection and classification module that receives multimodal data from TBI patients (demographic data, clinical data, laboratory test results, and CT findings). It then infers one of four TBI severity levels. This research investigates various machine learning models and feature selection techniques, ultimately identifying the optimal combination of gradient boosting machine and random forest for the task, which we refer to as GBMRF. This method enabled us to identify a small set of essential features, reducing patient testing costs by 35%, while achieving the highest accuracy rates of 88.82% and 89.78% on two datasets (a public TBI dataset and our self-collected dataset, TBI_MH103). Classification modules are available at https://github.com/auverngo110/Traumatic_Brain_Injury_103 .</p>\",\"PeriodicalId\":49840,\"journal\":{\"name\":\"Medical & Biological Engineering & Computing\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Medical & Biological Engineering & Computing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s11517-025-03431-w\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical & Biological Engineering & Computing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11517-025-03431-w","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

创伤性脑损伤(TBI)是最普遍的健康状况之一,严重程度评估是治疗、预后和靶向治疗的第一步。现有的使用机器学习(ML)进行自动结果预测的研究往往忽视了TBI特征在决策中的重要性以及有限和不平衡的训练数据所带来的挑战。此外,许多尝试都集中在定量评估ML算法而不解释决策,这使得结果难以解释和应用于经验不足的医生。本研究提出了一种新的支持工具,称为E-TBI (TBI后可解释的结果预测),设计了一个用户友好的基于网络的界面,以帮助医生使用机器学习进行TBI后的结果预测。该工具具有可视化决策过程中应用的规则的能力。该工具的核心是一个特征选择和分类模块,该模块接收来自TBI患者的多模态数据(人口统计数据、临床数据、实验室测试结果和CT结果)。然后,它推断出四种脑损伤严重程度中的一种。本研究考察了各种机器学习模型和特征选择技术,最终确定了梯度增强机和随机森林的最佳组合,我们称之为GBMRF。该方法使我们能够识别一小部分基本特征,将患者检测成本降低35%,同时在两个数据集(公共TBI数据集和我们自己收集的数据集TBI_MH103)上实现了88.82%和89.78%的最高准确率。分类模块可在https://github.com/auverngo110/Traumatic_Brain_Injury_103上获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
E-TBI: explainable outcome prediction after traumatic brain injury using machine learning.

Traumatic brain injury (TBI) is one of the most prevalent health conditions, with severity assessment serving as an initial step for management, prognosis, and targeted therapy. Existing studies on automated outcome prediction using machine learning (ML) often overlook the importance of TBI features in decision-making and the challenges posed by limited and imbalanced training data. Furthermore, many attempts have focused on quantitatively evaluating ML algorithms without explaining the decisions, making the outcomes difficult to interpret and apply for less-experienced doctors. This study presents a novel supportive tool, named E-TBI (explainable outcome prediction after TBI), designed with a user-friendly web-based interface to assist doctors in outcome prediction after TBI using machine learning. The tool is developed with the capability to visualize rules applied in the decision-making process. At the tool's core is a feature selection and classification module that receives multimodal data from TBI patients (demographic data, clinical data, laboratory test results, and CT findings). It then infers one of four TBI severity levels. This research investigates various machine learning models and feature selection techniques, ultimately identifying the optimal combination of gradient boosting machine and random forest for the task, which we refer to as GBMRF. This method enabled us to identify a small set of essential features, reducing patient testing costs by 35%, while achieving the highest accuracy rates of 88.82% and 89.78% on two datasets (a public TBI dataset and our self-collected dataset, TBI_MH103). Classification modules are available at https://github.com/auverngo110/Traumatic_Brain_Injury_103 .

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Medical & Biological Engineering & Computing
Medical & Biological Engineering & Computing 医学-工程:生物医学
CiteScore
6.00
自引率
3.10%
发文量
249
审稿时长
3.5 months
期刊介绍: Founded in 1963, Medical & Biological Engineering & Computing (MBEC) continues to serve the biomedical engineering community, covering the entire spectrum of biomedical and clinical engineering. The journal presents exciting and vital experimental and theoretical developments in biomedical science and technology, and reports on advances in computer-based methodologies in these multidisciplinary subjects. The journal also incorporates new and evolving technologies including cellular engineering and molecular imaging. MBEC publishes original research articles as well as reviews and technical notes. Its Rapid Communications category focuses on material of immediate value to the readership, while the Controversies section provides a forum to exchange views on selected issues, stimulating a vigorous and informed debate in this exciting and high profile field. MBEC is an official journal of the International Federation of Medical and Biological Engineering (IFMBE).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信