Katherine M Hanson, Anthony D Long, Stuart J Macdonald
{"title":"极端QTL定位使黑腹果蝇新的锌毒性反应位点得以鉴定。","authors":"Katherine M Hanson, Anthony D Long, Stuart J Macdonald","doi":"10.1093/genetics/iyaf173","DOIUrl":null,"url":null,"abstract":"<p><p>Heavy metals are a widespread environmental contaminant, and even low levels of some metals can disrupt cellular processes and result in DNA damage. However, the consequences of metal exposure are variable among individuals, with susceptibility to metal toxicity representing a complex trait influenced by genetic and non-genetic factors. To uncover toxicity response genes, and better understand responses to metal toxicity, we sought to dissect resistance to zinc, a metal required for normal cellular function, which can be toxic at high doses. To facilitate efficient, powerful discovery of Quantitative Trait Loci (QTL) we employed extreme, or X-QTL mapping, leveraging a multiparental, recombinant Drosophila melanogaster population. Our approach involved bulk selection of zinc-resistant females, sequencing several replicate pools of selected and control animals, and identified QTL as genomic positions showing consistent allele frequency shifts between treatments. We successfully identified seven regions segregating for resistance/susceptibility alleles and implicated several strong candidate genes. Phenotypic characterization of populations derived from selected or control animals revealed that our selection procedure resulted in greater egg-to-adult emergence, and a reduced developmental delay on zinc media. We subsequently measured emergence and development time for a series of midgut-specific RNAi gene knockdowns and genetic controls raised in both zinc-supplemented and normal media. This identified ten genes with significant genotype-by-treatment effects, including pHCl-2, which encodes a zinc sensor protein. Our work highlights recognized and novel contributors to zinc toxicity resistance in flies, and provides a pathway to a broader understanding of the biological impact of metal toxicity.</p>","PeriodicalId":48925,"journal":{"name":"Genetics","volume":" ","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2025-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Extreme QTL mapping enables the identification of novel zinc toxicity response loci in Drosophila melanogaster.\",\"authors\":\"Katherine M Hanson, Anthony D Long, Stuart J Macdonald\",\"doi\":\"10.1093/genetics/iyaf173\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Heavy metals are a widespread environmental contaminant, and even low levels of some metals can disrupt cellular processes and result in DNA damage. However, the consequences of metal exposure are variable among individuals, with susceptibility to metal toxicity representing a complex trait influenced by genetic and non-genetic factors. To uncover toxicity response genes, and better understand responses to metal toxicity, we sought to dissect resistance to zinc, a metal required for normal cellular function, which can be toxic at high doses. To facilitate efficient, powerful discovery of Quantitative Trait Loci (QTL) we employed extreme, or X-QTL mapping, leveraging a multiparental, recombinant Drosophila melanogaster population. Our approach involved bulk selection of zinc-resistant females, sequencing several replicate pools of selected and control animals, and identified QTL as genomic positions showing consistent allele frequency shifts between treatments. We successfully identified seven regions segregating for resistance/susceptibility alleles and implicated several strong candidate genes. Phenotypic characterization of populations derived from selected or control animals revealed that our selection procedure resulted in greater egg-to-adult emergence, and a reduced developmental delay on zinc media. We subsequently measured emergence and development time for a series of midgut-specific RNAi gene knockdowns and genetic controls raised in both zinc-supplemented and normal media. This identified ten genes with significant genotype-by-treatment effects, including pHCl-2, which encodes a zinc sensor protein. Our work highlights recognized and novel contributors to zinc toxicity resistance in flies, and provides a pathway to a broader understanding of the biological impact of metal toxicity.</p>\",\"PeriodicalId\":48925,\"journal\":{\"name\":\"Genetics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2025-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Genetics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/genetics/iyaf173\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/genetics/iyaf173","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
Extreme QTL mapping enables the identification of novel zinc toxicity response loci in Drosophila melanogaster.
Heavy metals are a widespread environmental contaminant, and even low levels of some metals can disrupt cellular processes and result in DNA damage. However, the consequences of metal exposure are variable among individuals, with susceptibility to metal toxicity representing a complex trait influenced by genetic and non-genetic factors. To uncover toxicity response genes, and better understand responses to metal toxicity, we sought to dissect resistance to zinc, a metal required for normal cellular function, which can be toxic at high doses. To facilitate efficient, powerful discovery of Quantitative Trait Loci (QTL) we employed extreme, or X-QTL mapping, leveraging a multiparental, recombinant Drosophila melanogaster population. Our approach involved bulk selection of zinc-resistant females, sequencing several replicate pools of selected and control animals, and identified QTL as genomic positions showing consistent allele frequency shifts between treatments. We successfully identified seven regions segregating for resistance/susceptibility alleles and implicated several strong candidate genes. Phenotypic characterization of populations derived from selected or control animals revealed that our selection procedure resulted in greater egg-to-adult emergence, and a reduced developmental delay on zinc media. We subsequently measured emergence and development time for a series of midgut-specific RNAi gene knockdowns and genetic controls raised in both zinc-supplemented and normal media. This identified ten genes with significant genotype-by-treatment effects, including pHCl-2, which encodes a zinc sensor protein. Our work highlights recognized and novel contributors to zinc toxicity resistance in flies, and provides a pathway to a broader understanding of the biological impact of metal toxicity.
期刊介绍:
GENETICS is published by the Genetics Society of America, a scholarly society that seeks to deepen our understanding of the living world by advancing our understanding of genetics. Since 1916, GENETICS has published high-quality, original research presenting novel findings bearing on genetics and genomics. The journal publishes empirical studies of organisms ranging from microbes to humans, as well as theoretical work.
While it has an illustrious history, GENETICS has changed along with the communities it serves: it is not your mentor''s journal.
The editors make decisions quickly – in around 30 days – without sacrificing the excellence and scholarship for which the journal has long been known. GENETICS is a peer reviewed, peer-edited journal, with an international reach and increasing visibility and impact. All editorial decisions are made through collaboration of at least two editors who are practicing scientists.
GENETICS is constantly innovating: expanded types of content include Reviews, Commentary (current issues of interest to geneticists), Perspectives (historical), Primers (to introduce primary literature into the classroom), Toolbox Reviews, plus YeastBook, FlyBook, and WormBook (coming spring 2016). For particularly time-sensitive results, we publish Communications. As part of our mission to serve our communities, we''ve published thematic collections, including Genomic Selection, Multiparental Populations, Mouse Collaborative Cross, and the Genetics of Sex.