多头与基线深度学习模型在ADHD脑电信号分类中的比较研究。

IF 2 4区 医学 Q3 ENGINEERING, BIOMEDICAL
Lamiaa A Amar, Ahmed M Otifi, Shimaa A Mohamed
{"title":"多头与基线深度学习模型在ADHD脑电信号分类中的比较研究。","authors":"Lamiaa A Amar, Ahmed M Otifi, Shimaa A Mohamed","doi":"10.1007/s13246-025-01609-y","DOIUrl":null,"url":null,"abstract":"<p><p>The prevalence of Attention-Deficit/Hyperactivity Disorder among children is rising, emphasizing the need for early and accurate diagnostic methods to address associated academic and behavioral challenges. Electroencephalography-based analysis has emerged as a promising noninvasive approach for detecting Attention-Deficit/Hyperactivity Disorder; however, utilizing the full range of electroencephalography channels often results in high computational complexity and an increased risk of model overfitting. This study presents a comparative investigation between a proposed multi-headed deep learning framework and a traditional baseline single-model approach for classifying Attention-Deficit/Hyperactivity Disorder using electroencephalography signals. Electroencephalography data were collected from 79 participants (42 healthy adults and 37 diagnosed with Attention-Deficit/Hyperactivity Disorder) across four cognitive states: resting with eyes open, resting with eyes closed, performing cognitive tasks, and listening to omniarmonic sounds. To reduce complexity, signals from only five strategically selected electroencephalography channels were used. The multi-headed approach employed parallel deep learning branches-comprising combinations of Bidirectional Long Short-Term Memory, Long Short-Term Memory, and Gated Recurrent Unit architectures-to capture inter-channel relationships and extract richer temporal features. Comparative analysis revealed that the combination of Long Short-Term Memory and Bidirectional Long Short-Term Memory within the multi-headed framework achieved the highest classification accuracy of 89.87%, significantly outperforming all baseline configurations. These results demonstrate the effectiveness of integrating multiple deep learning architectures and highlight the potential of multi-headed models for enhancing electroencephalography-based Attention-Deficit/Hyperactivity Disorder diagnosis.</p>","PeriodicalId":48490,"journal":{"name":"Physical and Engineering Sciences in Medicine","volume":" ","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2025-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparative study of multi-headed and baseline deep learning models for ADHD classification from EEG signals.\",\"authors\":\"Lamiaa A Amar, Ahmed M Otifi, Shimaa A Mohamed\",\"doi\":\"10.1007/s13246-025-01609-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The prevalence of Attention-Deficit/Hyperactivity Disorder among children is rising, emphasizing the need for early and accurate diagnostic methods to address associated academic and behavioral challenges. Electroencephalography-based analysis has emerged as a promising noninvasive approach for detecting Attention-Deficit/Hyperactivity Disorder; however, utilizing the full range of electroencephalography channels often results in high computational complexity and an increased risk of model overfitting. This study presents a comparative investigation between a proposed multi-headed deep learning framework and a traditional baseline single-model approach for classifying Attention-Deficit/Hyperactivity Disorder using electroencephalography signals. Electroencephalography data were collected from 79 participants (42 healthy adults and 37 diagnosed with Attention-Deficit/Hyperactivity Disorder) across four cognitive states: resting with eyes open, resting with eyes closed, performing cognitive tasks, and listening to omniarmonic sounds. To reduce complexity, signals from only five strategically selected electroencephalography channels were used. The multi-headed approach employed parallel deep learning branches-comprising combinations of Bidirectional Long Short-Term Memory, Long Short-Term Memory, and Gated Recurrent Unit architectures-to capture inter-channel relationships and extract richer temporal features. Comparative analysis revealed that the combination of Long Short-Term Memory and Bidirectional Long Short-Term Memory within the multi-headed framework achieved the highest classification accuracy of 89.87%, significantly outperforming all baseline configurations. These results demonstrate the effectiveness of integrating multiple deep learning architectures and highlight the potential of multi-headed models for enhancing electroencephalography-based Attention-Deficit/Hyperactivity Disorder diagnosis.</p>\",\"PeriodicalId\":48490,\"journal\":{\"name\":\"Physical and Engineering Sciences in Medicine\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2025-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical and Engineering Sciences in Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s13246-025-01609-y\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical and Engineering Sciences in Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s13246-025-01609-y","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

儿童中注意力缺陷/多动障碍的患病率正在上升,强调需要早期和准确的诊断方法来解决相关的学术和行为挑战。基于脑电图的分析已经成为一种很有前途的检测注意缺陷/多动障碍的无创方法;然而,利用全范围的脑电图通道通常会导致高计算复杂性和模型过拟合的风险增加。本研究提出了一个多头深度学习框架和传统的基线单模型方法之间的比较研究,用于使用脑电图信号对注意缺陷/多动障碍进行分类。从79名参与者(42名健康成年人和37名被诊断为注意力缺陷/多动障碍)中收集了四种认知状态的脑电图数据:睁眼休息、闭眼休息、执行认知任务和听全谐波声音。为了减少复杂性,只使用了5个策略性选择的脑电图通道的信号。多头方法采用并行深度学习分支——包括双向长短期记忆、长短期记忆和门控循环单元架构的组合——来捕获通道间关系并提取更丰富的时间特征。对比分析发现,多头框架下长短期记忆和双向长短期记忆组合的分类准确率最高,达到89.87%,显著优于所有基线配置。这些结果证明了整合多个深度学习架构的有效性,并突出了多头模型在增强基于脑电图的注意缺陷/多动障碍诊断方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Comparative study of multi-headed and baseline deep learning models for ADHD classification from EEG signals.

The prevalence of Attention-Deficit/Hyperactivity Disorder among children is rising, emphasizing the need for early and accurate diagnostic methods to address associated academic and behavioral challenges. Electroencephalography-based analysis has emerged as a promising noninvasive approach for detecting Attention-Deficit/Hyperactivity Disorder; however, utilizing the full range of electroencephalography channels often results in high computational complexity and an increased risk of model overfitting. This study presents a comparative investigation between a proposed multi-headed deep learning framework and a traditional baseline single-model approach for classifying Attention-Deficit/Hyperactivity Disorder using electroencephalography signals. Electroencephalography data were collected from 79 participants (42 healthy adults and 37 diagnosed with Attention-Deficit/Hyperactivity Disorder) across four cognitive states: resting with eyes open, resting with eyes closed, performing cognitive tasks, and listening to omniarmonic sounds. To reduce complexity, signals from only five strategically selected electroencephalography channels were used. The multi-headed approach employed parallel deep learning branches-comprising combinations of Bidirectional Long Short-Term Memory, Long Short-Term Memory, and Gated Recurrent Unit architectures-to capture inter-channel relationships and extract richer temporal features. Comparative analysis revealed that the combination of Long Short-Term Memory and Bidirectional Long Short-Term Memory within the multi-headed framework achieved the highest classification accuracy of 89.87%, significantly outperforming all baseline configurations. These results demonstrate the effectiveness of integrating multiple deep learning architectures and highlight the potential of multi-headed models for enhancing electroencephalography-based Attention-Deficit/Hyperactivity Disorder diagnosis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.40
自引率
4.50%
发文量
110
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信