关于O (n)算法在top- k和子水平集上的投影。

IF 3.6 1区 数学 Q1 COMPUTER SCIENCE, SOFTWARE ENGINEERING
Mathematical Programming Computation Pub Date : 2025-06-01 Epub Date: 2025-01-08 DOI:10.1007/s12532-024-00273-9
Jake Roth, Ying Cui
{"title":"关于O (n)算法在top- k和子水平集上的投影。","authors":"Jake Roth, Ying Cui","doi":"10.1007/s12532-024-00273-9","DOIUrl":null,"url":null,"abstract":"<p><p>The <i>top-k-sum</i> operator computes the sum of the largest <math><mi>k</mi></math> components of a given vector. The Euclidean projection onto the top- <math><mi>k</mi></math> -sum sublevel set serves as a crucial subroutine in iterative methods to solve composite superquantile optimization problems. In this paper, we introduce a solver that implements two finite-termination algorithms to compute this projection. Both algorithms have <math><mi>O</mi> <mo>(</mo> <mi>n</mi> <mo>)</mo></math> complexity of floating point operations when applied to a sorted <math><mi>n</mi></math> -dimensional input vector, where the absorbed constant <i>is independent of</i> <math><mi>k</mi></math> . This stands in contrast to an existing grid-search-inspired method that has <math><mi>O</mi> <mo>(</mo> <mi>k</mi> <mo>(</mo> <mi>n</mi> <mo>-</mo> <mi>k</mi> <mo>)</mo> <mo>)</mo></math> complexity, a partition-based method with <math><mi>O</mi> <mo>(</mo> <mi>n</mi> <mo>+</mo> <mi>D</mi> <mspace></mspace> <mtext>log</mtext> <mspace></mspace> <mi>D</mi> <mo>)</mo></math> complexity, where <math><mi>D</mi> <mo>≤</mo> <mi>n</mi></math> is the number of distinct elements in the input vector, and a semismooth Newton method with a finite termination property but unspecified floating point complexity. The improvement of our methods over the first method is significant when <math><mi>k</mi></math> is linearly dependent on <math><mi>n</mi></math> , which is frequently encountered in practical superquantile optimization applications. In instances where the input vector is unsorted, an additional cost is incurred to (partially) sort the vector, whereas a full sort of the input vector seems unavoidable for the other two methods. To reduce this cost, we further derive a rigorous procedure that leverages approximate sorting to compute the projection, which is particularly useful when solving a sequence of similar projection problems. Numerical results show that our methods solve problems of scale <math><mi>n</mi> <mo>=</mo> <msup><mrow><mn>10</mn></mrow> <mrow><mn>7</mn></mrow> </msup> </math> and <math><mi>k</mi> <mo>=</mo> <msup><mrow><mn>10</mn></mrow> <mrow><mn>4</mn></mrow> </msup> </math> within 0.05 s, whereas the most competitive alternative, the semismooth Newton-based method, takes about 1 s. The existing grid-search method and Gurobi's QP solver can take from minutes to hours.</p>","PeriodicalId":47044,"journal":{"name":"Mathematical Programming Computation","volume":"17 2","pages":"307-348"},"PeriodicalIF":3.6000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12380050/pdf/","citationCount":"0","resultStr":"{\"title\":\"<ArticleTitle xmlns:ns0=\\\"http://www.w3.org/1998/Math/MathML\\\">On <ns0:math><ns0:mi>O</ns0:mi> <ns0:mo>(</ns0:mo> <ns0:mi>n</ns0:mi> <ns0:mo>)</ns0:mo></ns0:math> algorithms for projection onto the top- <ns0:math><ns0:mi>k</ns0:mi></ns0:math> -sum sublevel set.\",\"authors\":\"Jake Roth, Ying Cui\",\"doi\":\"10.1007/s12532-024-00273-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The <i>top-k-sum</i> operator computes the sum of the largest <math><mi>k</mi></math> components of a given vector. The Euclidean projection onto the top- <math><mi>k</mi></math> -sum sublevel set serves as a crucial subroutine in iterative methods to solve composite superquantile optimization problems. In this paper, we introduce a solver that implements two finite-termination algorithms to compute this projection. Both algorithms have <math><mi>O</mi> <mo>(</mo> <mi>n</mi> <mo>)</mo></math> complexity of floating point operations when applied to a sorted <math><mi>n</mi></math> -dimensional input vector, where the absorbed constant <i>is independent of</i> <math><mi>k</mi></math> . This stands in contrast to an existing grid-search-inspired method that has <math><mi>O</mi> <mo>(</mo> <mi>k</mi> <mo>(</mo> <mi>n</mi> <mo>-</mo> <mi>k</mi> <mo>)</mo> <mo>)</mo></math> complexity, a partition-based method with <math><mi>O</mi> <mo>(</mo> <mi>n</mi> <mo>+</mo> <mi>D</mi> <mspace></mspace> <mtext>log</mtext> <mspace></mspace> <mi>D</mi> <mo>)</mo></math> complexity, where <math><mi>D</mi> <mo>≤</mo> <mi>n</mi></math> is the number of distinct elements in the input vector, and a semismooth Newton method with a finite termination property but unspecified floating point complexity. The improvement of our methods over the first method is significant when <math><mi>k</mi></math> is linearly dependent on <math><mi>n</mi></math> , which is frequently encountered in practical superquantile optimization applications. In instances where the input vector is unsorted, an additional cost is incurred to (partially) sort the vector, whereas a full sort of the input vector seems unavoidable for the other two methods. To reduce this cost, we further derive a rigorous procedure that leverages approximate sorting to compute the projection, which is particularly useful when solving a sequence of similar projection problems. Numerical results show that our methods solve problems of scale <math><mi>n</mi> <mo>=</mo> <msup><mrow><mn>10</mn></mrow> <mrow><mn>7</mn></mrow> </msup> </math> and <math><mi>k</mi> <mo>=</mo> <msup><mrow><mn>10</mn></mrow> <mrow><mn>4</mn></mrow> </msup> </math> within 0.05 s, whereas the most competitive alternative, the semismooth Newton-based method, takes about 1 s. The existing grid-search method and Gurobi's QP solver can take from minutes to hours.</p>\",\"PeriodicalId\":47044,\"journal\":{\"name\":\"Mathematical Programming Computation\",\"volume\":\"17 2\",\"pages\":\"307-348\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2025-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12380050/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Programming Computation\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s12532-024-00273-9\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/8 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Programming Computation","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s12532-024-00273-9","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/8 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

top-k-sum算子计算给定向量的最大k个分量的和。在求解复合超分位数优化问题的迭代方法中,顶k和子水平集上的欧几里得投影是一个至关重要的子程序。在本文中,我们引入了一个求解器,该求解器实现了两种有限终止算法来计算该投影。当应用于排序的n维输入向量时,这两种算法的浮点运算复杂度都为O (n),其中吸收常数与k无关。这与现有的网格搜索启发的方法形成对比,该方法具有O (k (n- k))复杂度,基于分区的方法具有O (n + D log D)复杂度,其中D≤n是输入向量中不同元素的数量,以及具有有限终止性质但未指定浮点复杂度的半光滑牛顿方法。当k线性依赖于n时,我们的方法对第一种方法的改进是显著的,这在实际的超分位数优化应用中经常遇到。在输入向量未排序的情况下,对向量进行(部分)排序会产生额外的开销,而对于其他两种方法来说,对输入向量进行完整排序似乎是不可避免的。为了降低这个成本,我们进一步推导了一个严格的程序,利用近似排序来计算投影,这在解决一系列类似的投影问题时特别有用。数值结果表明,我们的方法在0.05 s内解决了尺度n = 10.7和k = 10.4的问题,而最具竞争力的替代方法,基于半光滑牛顿的方法,大约需要1 s。现有的网格搜索方法和Gurobi的QP求解器可能需要几分钟到几个小时。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On O ( n ) algorithms for projection onto the top- k -sum sublevel set.

The top-k-sum operator computes the sum of the largest k components of a given vector. The Euclidean projection onto the top- k -sum sublevel set serves as a crucial subroutine in iterative methods to solve composite superquantile optimization problems. In this paper, we introduce a solver that implements two finite-termination algorithms to compute this projection. Both algorithms have O ( n ) complexity of floating point operations when applied to a sorted n -dimensional input vector, where the absorbed constant is independent of k . This stands in contrast to an existing grid-search-inspired method that has O ( k ( n - k ) ) complexity, a partition-based method with O ( n + D log D ) complexity, where D n is the number of distinct elements in the input vector, and a semismooth Newton method with a finite termination property but unspecified floating point complexity. The improvement of our methods over the first method is significant when k is linearly dependent on n , which is frequently encountered in practical superquantile optimization applications. In instances where the input vector is unsorted, an additional cost is incurred to (partially) sort the vector, whereas a full sort of the input vector seems unavoidable for the other two methods. To reduce this cost, we further derive a rigorous procedure that leverages approximate sorting to compute the projection, which is particularly useful when solving a sequence of similar projection problems. Numerical results show that our methods solve problems of scale n = 10 7 and k = 10 4 within 0.05 s, whereas the most competitive alternative, the semismooth Newton-based method, takes about 1 s. The existing grid-search method and Gurobi's QP solver can take from minutes to hours.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mathematical Programming Computation
Mathematical Programming Computation OPERATIONS RESEARCH & MANAGEMENT SCIENCE-
CiteScore
10.80
自引率
4.80%
发文量
18
期刊介绍: Mathematical Programming Computation (MPC) publishes original research articles advancing the state of the art of practical computation in Mathematical Optimization and closely related fields. Authors are required to submit software source code and data along with their manuscripts (while open-source software is encouraged, it is not required). Where applicable, the review process will aim for verification of reported computational results. Topics of articles include: New algorithmic techniques, with substantial computational testing New applications, with substantial computational testing Innovative software Comparative tests of algorithms Modeling environments Libraries of problem instances Software frameworks or libraries. Among the specific topics covered in MPC are linear programming, convex optimization, nonlinear optimization, stochastic optimization, integer programming, combinatorial optimization, global optimization, network algorithms, and modeling languages. MPC accepts manuscript submission from its own editorial board members in cases in which the identities of the associate editor, reviewers, and technical editor handling the manuscript can remain fully confidential. To be accepted, manuscripts submitted by editorial board members must meet the same quality standards as all other accepted submissions; there is absolutely no special preference or consideration given to such submissions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信