动态胸片成像质量的标准化:基于普通胸片数据的个体化曝光设置的确定程序。

IF 1.5 Q3 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
Hiroaki Tsutsumi, Kazuki Takegami, Taiga Miura, Masaki Takemitsu, Ayumi Takegami, Shohei Kudomi, Sono Kanoya, Tsunahiko Hirano, Kazuto Matsunaga
{"title":"动态胸片成像质量的标准化:基于普通胸片数据的个体化曝光设置的确定程序。","authors":"Hiroaki Tsutsumi, Kazuki Takegami, Taiga Miura, Masaki Takemitsu, Ayumi Takegami, Shohei Kudomi, Sono Kanoya, Tsunahiko Hirano, Kazuto Matsunaga","doi":"10.1007/s12194-025-00955-6","DOIUrl":null,"url":null,"abstract":"<p><p>In plain chest radiography (CXR), automatic exposure control (AEC) is generally used to standardize image quality. In contrast, dynamic chest radiography (DCR) systems preliminarily require manual setting of tube current-time products (mAs value). Body mass index (BMI) of patients is one of the indexes to determine the mAs value; however, standardization is limited because the anatomical differences are not considered. In this study, for further standardization, we propose a practical procedure to determine the individual mAs value of DCR using data obtained from CXR. To evaluate its effectiveness, we retrospectively analyzed 97 patients who underwent both CXR and DCR on the same day. DCR was performed in the following procedures: (1) obtain the relationship between the mAs value and the exposure indicator (S value, Konica Minolta, Inc.) obtained in CXR acquisition, (2) calculate the mAs value of DCR for the target S value of 2500, and (3) record the S value in DCR. The tube voltages for CXR and DCR were set to 120 kV and 100 kV with a copper filter, respectively. The differences in exposure doses were corrected by measuring the air kerma using a CdTe detector. As a result, the S values of CXR and DCR were 133 ± 13 (Coefficient of Variation (CV) = 9.9%) and 2629 ± 207 (CV = 7.9%), respectively, which were not dependent on the patient size based on evaluating the S values of five classified BMI groups. In conclusion, our proposed procedure enables standardization of the image quality in DCR by optimizing the patient-specific exposure conditions.</p>","PeriodicalId":46252,"journal":{"name":"Radiological Physics and Technology","volume":" ","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2025-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Standardization of image quality in dynamic chest radiography: a determination procedure of individualized exposure settings based on the data from plain chest radiography.\",\"authors\":\"Hiroaki Tsutsumi, Kazuki Takegami, Taiga Miura, Masaki Takemitsu, Ayumi Takegami, Shohei Kudomi, Sono Kanoya, Tsunahiko Hirano, Kazuto Matsunaga\",\"doi\":\"10.1007/s12194-025-00955-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In plain chest radiography (CXR), automatic exposure control (AEC) is generally used to standardize image quality. In contrast, dynamic chest radiography (DCR) systems preliminarily require manual setting of tube current-time products (mAs value). Body mass index (BMI) of patients is one of the indexes to determine the mAs value; however, standardization is limited because the anatomical differences are not considered. In this study, for further standardization, we propose a practical procedure to determine the individual mAs value of DCR using data obtained from CXR. To evaluate its effectiveness, we retrospectively analyzed 97 patients who underwent both CXR and DCR on the same day. DCR was performed in the following procedures: (1) obtain the relationship between the mAs value and the exposure indicator (S value, Konica Minolta, Inc.) obtained in CXR acquisition, (2) calculate the mAs value of DCR for the target S value of 2500, and (3) record the S value in DCR. The tube voltages for CXR and DCR were set to 120 kV and 100 kV with a copper filter, respectively. The differences in exposure doses were corrected by measuring the air kerma using a CdTe detector. As a result, the S values of CXR and DCR were 133 ± 13 (Coefficient of Variation (CV) = 9.9%) and 2629 ± 207 (CV = 7.9%), respectively, which were not dependent on the patient size based on evaluating the S values of five classified BMI groups. In conclusion, our proposed procedure enables standardization of the image quality in DCR by optimizing the patient-specific exposure conditions.</p>\",\"PeriodicalId\":46252,\"journal\":{\"name\":\"Radiological Physics and Technology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2025-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Radiological Physics and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s12194-025-00955-6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Radiological Physics and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s12194-025-00955-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

摘要

在胸部x线平片(CXR)中,通常采用自动曝光控制(AEC)来规范图像质量。相比之下,动态胸片(DCR)系统初步需要手动设置管电流时间产品(mAs值)。患者身体质量指数(BMI)是确定mAs值的指标之一;然而,标准化是有限的,因为没有考虑解剖差异。在本研究中,为了进一步标准化,我们提出了一种实用的程序,利用从CXR获得的数据来确定DCR的单个mAs值。为了评估其有效性,我们回顾性分析了97例在同一天接受CXR和DCR的患者。进行DCR的步骤如下:(1)获得在CXR采集中获得的ma值与曝光指标(S值,Konica Minolta, Inc.)之间的关系;(2)计算目标S值为2500的DCR的mAs值;(3)在DCR中记录S值。CXR和DCR的管电压分别设置为120 kV和100 kV,带铜滤波器。暴露剂量的差异通过使用碲化镉探测器测量空气温度来纠正。结果,CXR和DCR的S值分别为133±13(变异系数(CV) = 9.9%)和2629±207 (CV = 7.9%),这与5个BMI分类组的S值无关。总之,我们提出的程序通过优化患者特定的曝光条件,实现了DCR图像质量的标准化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Standardization of image quality in dynamic chest radiography: a determination procedure of individualized exposure settings based on the data from plain chest radiography.

In plain chest radiography (CXR), automatic exposure control (AEC) is generally used to standardize image quality. In contrast, dynamic chest radiography (DCR) systems preliminarily require manual setting of tube current-time products (mAs value). Body mass index (BMI) of patients is one of the indexes to determine the mAs value; however, standardization is limited because the anatomical differences are not considered. In this study, for further standardization, we propose a practical procedure to determine the individual mAs value of DCR using data obtained from CXR. To evaluate its effectiveness, we retrospectively analyzed 97 patients who underwent both CXR and DCR on the same day. DCR was performed in the following procedures: (1) obtain the relationship between the mAs value and the exposure indicator (S value, Konica Minolta, Inc.) obtained in CXR acquisition, (2) calculate the mAs value of DCR for the target S value of 2500, and (3) record the S value in DCR. The tube voltages for CXR and DCR were set to 120 kV and 100 kV with a copper filter, respectively. The differences in exposure doses were corrected by measuring the air kerma using a CdTe detector. As a result, the S values of CXR and DCR were 133 ± 13 (Coefficient of Variation (CV) = 9.9%) and 2629 ± 207 (CV = 7.9%), respectively, which were not dependent on the patient size based on evaluating the S values of five classified BMI groups. In conclusion, our proposed procedure enables standardization of the image quality in DCR by optimizing the patient-specific exposure conditions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Radiological Physics and Technology
Radiological Physics and Technology RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING-
CiteScore
3.00
自引率
12.50%
发文量
40
期刊介绍: The purpose of the journal Radiological Physics and Technology is to provide a forum for sharing new knowledge related to research and development in radiological science and technology, including medical physics and radiological technology in diagnostic radiology, nuclear medicine, and radiation therapy among many other radiological disciplines, as well as to contribute to progress and improvement in medical practice and patient health care.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信