{"title":"数字乳房x线照相术中图像数目对带金盘幻像阈值图像对比度测量的影响。","authors":"Michał Biegała, Agata Batolik","doi":"10.1007/s12194-025-00958-3","DOIUrl":null,"url":null,"abstract":"<p><p>Image quality, in addition to radiation dose, is the most important physical parameter in digital mammography. Image quality should be periodically monitored using the CDMAM phantom. The aim of this study is to investigate the effect of the number of analyzed images on the result of threshold image contrast measurements using the CDMAM phantom in different versions. The images obtained using two versions of the CDMAM phantom, i.e., 3.4 and 4.0, were analyzed. The image analysis was performed and repeated 10 times for 2, 4, 6, 8, 12, 16, 24, and 32 images from a pool of 43 images, separately for each phantom. For the CDMAM 3.4 phantom, a statistical difference was demonstrated between the following groups: S2 vs S6 (p < 0.006), S6 vs S16 (p < 0.001), S6 vs S24 (p < 0.002), S6 vs S32 (p < 0.021), S8 vs S16 (p < 0.019), S8 vs S24 (p < 0.048). For the CDMAM 4.0 phantom, a statistically significant difference was demonstrated between all groups and the N2 group (p < 0.000). For the CDMAM 3.4 phantom, the most favorable number of images required for analysis cannot be clearly determined. For the CDMAM 4.0 phantom, it is recommended to perform 24 images for analysis. Particular attention should be paid when determining the threshold image contrast for a disk diameter of 0.1 mm, as this parameter is used during exposure automation control.</p>","PeriodicalId":46252,"journal":{"name":"Radiological Physics and Technology","volume":" ","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2025-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Influence of the number of images on threshold image contrast measurements with a phantom with gold disks in digital mammography.\",\"authors\":\"Michał Biegała, Agata Batolik\",\"doi\":\"10.1007/s12194-025-00958-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Image quality, in addition to radiation dose, is the most important physical parameter in digital mammography. Image quality should be periodically monitored using the CDMAM phantom. The aim of this study is to investigate the effect of the number of analyzed images on the result of threshold image contrast measurements using the CDMAM phantom in different versions. The images obtained using two versions of the CDMAM phantom, i.e., 3.4 and 4.0, were analyzed. The image analysis was performed and repeated 10 times for 2, 4, 6, 8, 12, 16, 24, and 32 images from a pool of 43 images, separately for each phantom. For the CDMAM 3.4 phantom, a statistical difference was demonstrated between the following groups: S2 vs S6 (p < 0.006), S6 vs S16 (p < 0.001), S6 vs S24 (p < 0.002), S6 vs S32 (p < 0.021), S8 vs S16 (p < 0.019), S8 vs S24 (p < 0.048). For the CDMAM 4.0 phantom, a statistically significant difference was demonstrated between all groups and the N2 group (p < 0.000). For the CDMAM 3.4 phantom, the most favorable number of images required for analysis cannot be clearly determined. For the CDMAM 4.0 phantom, it is recommended to perform 24 images for analysis. Particular attention should be paid when determining the threshold image contrast for a disk diameter of 0.1 mm, as this parameter is used during exposure automation control.</p>\",\"PeriodicalId\":46252,\"journal\":{\"name\":\"Radiological Physics and Technology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2025-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Radiological Physics and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s12194-025-00958-3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Radiological Physics and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s12194-025-00958-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
Influence of the number of images on threshold image contrast measurements with a phantom with gold disks in digital mammography.
Image quality, in addition to radiation dose, is the most important physical parameter in digital mammography. Image quality should be periodically monitored using the CDMAM phantom. The aim of this study is to investigate the effect of the number of analyzed images on the result of threshold image contrast measurements using the CDMAM phantom in different versions. The images obtained using two versions of the CDMAM phantom, i.e., 3.4 and 4.0, were analyzed. The image analysis was performed and repeated 10 times for 2, 4, 6, 8, 12, 16, 24, and 32 images from a pool of 43 images, separately for each phantom. For the CDMAM 3.4 phantom, a statistical difference was demonstrated between the following groups: S2 vs S6 (p < 0.006), S6 vs S16 (p < 0.001), S6 vs S24 (p < 0.002), S6 vs S32 (p < 0.021), S8 vs S16 (p < 0.019), S8 vs S24 (p < 0.048). For the CDMAM 4.0 phantom, a statistically significant difference was demonstrated between all groups and the N2 group (p < 0.000). For the CDMAM 3.4 phantom, the most favorable number of images required for analysis cannot be clearly determined. For the CDMAM 4.0 phantom, it is recommended to perform 24 images for analysis. Particular attention should be paid when determining the threshold image contrast for a disk diameter of 0.1 mm, as this parameter is used during exposure automation control.
期刊介绍:
The purpose of the journal Radiological Physics and Technology is to provide a forum for sharing new knowledge related to research and development in radiological science and technology, including medical physics and radiological technology in diagnostic radiology, nuclear medicine, and radiation therapy among many other radiological disciplines, as well as to contribute to progress and improvement in medical practice and patient health care.