[液态金属包覆导电纤维的制备与应用]。

Q4 Medicine
Chengfeng Liu, Jiabo Tang, Ming Li, Shihao Zhang, Yang Zou, Yonggang Lyu
{"title":"[液态金属包覆导电纤维的制备与应用]。","authors":"Chengfeng Liu, Jiabo Tang, Ming Li, Shihao Zhang, Yang Zou, Yonggang Lyu","doi":"10.7507/1001-5515.202507019","DOIUrl":null,"url":null,"abstract":"<p><p>Flexible conductive fibers have been widely applied in wearable flexible sensing. However, exposed wearable flexible sensors based on liquid metal (LM) are prone to abrasion and significant conductivity degradation. This study presented a high-sensitivity LM conductive fiber with integration of strain sensing, electrical heating, and thermochromic capabilities, which was fabricated by coating eutectic gallium-indium (EGaIn) onto spandex fibers modified with waterborne polyurethane (WPU), followed by thermal curing to form a protective polyurethane sheath. This fiber, designated as Spandex/WPU/EGaIn/Polyurethane (SWEP), exhibits a four-layer coaxial structure: spandex core, WPU modification layer, LM conductive layer, and polyurethane protective sheath. The SWEP fiber had a diameter of (458.3 ± 10.4) μm, linear density of (2.37 ± 0.15) g/m, and uniform EGaIn coating. The fiber had excellent conductivity with an average value of (3 716.9 ± 594.2) S/m. The strain sensing performance was particularly noteworthy. A 5 cm × 5 cm woven fabric was fabricated using polyester warp yarns and SWEP weft yarns. The fabric exhibited satisfactory moisture permeability [(536.06 ± 33.15) g/(m <sup>2</sup>·h)] and maintained stable thermochromic performance after repeated heating cycles. This advanced conductive fiber development is expected to significantly promote LM applications in wearable electronics and smart textile systems.</p>","PeriodicalId":39324,"journal":{"name":"生物医学工程学杂志","volume":"42 4","pages":"724-732"},"PeriodicalIF":0.0000,"publicationDate":"2025-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12409498/pdf/","citationCount":"0","resultStr":"{\"title\":\"[Preparation and application of conductive fiber coated with liquid metal].\",\"authors\":\"Chengfeng Liu, Jiabo Tang, Ming Li, Shihao Zhang, Yang Zou, Yonggang Lyu\",\"doi\":\"10.7507/1001-5515.202507019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Flexible conductive fibers have been widely applied in wearable flexible sensing. However, exposed wearable flexible sensors based on liquid metal (LM) are prone to abrasion and significant conductivity degradation. This study presented a high-sensitivity LM conductive fiber with integration of strain sensing, electrical heating, and thermochromic capabilities, which was fabricated by coating eutectic gallium-indium (EGaIn) onto spandex fibers modified with waterborne polyurethane (WPU), followed by thermal curing to form a protective polyurethane sheath. This fiber, designated as Spandex/WPU/EGaIn/Polyurethane (SWEP), exhibits a four-layer coaxial structure: spandex core, WPU modification layer, LM conductive layer, and polyurethane protective sheath. The SWEP fiber had a diameter of (458.3 ± 10.4) μm, linear density of (2.37 ± 0.15) g/m, and uniform EGaIn coating. The fiber had excellent conductivity with an average value of (3 716.9 ± 594.2) S/m. The strain sensing performance was particularly noteworthy. A 5 cm × 5 cm woven fabric was fabricated using polyester warp yarns and SWEP weft yarns. The fabric exhibited satisfactory moisture permeability [(536.06 ± 33.15) g/(m <sup>2</sup>·h)] and maintained stable thermochromic performance after repeated heating cycles. This advanced conductive fiber development is expected to significantly promote LM applications in wearable electronics and smart textile systems.</p>\",\"PeriodicalId\":39324,\"journal\":{\"name\":\"生物医学工程学杂志\",\"volume\":\"42 4\",\"pages\":\"724-732\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-08-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12409498/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"生物医学工程学杂志\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://doi.org/10.7507/1001-5515.202507019\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"生物医学工程学杂志","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.7507/1001-5515.202507019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

摘要

柔性导电纤维在可穿戴式柔性传感中得到了广泛的应用。然而,基于液态金属(LM)的暴露可穿戴柔性传感器容易磨损和电导率显著下降。本研究提出了一种具有应变传感、电加热和热致变色能力的高灵敏度LM导电纤维,该纤维是通过将共晶镓铟(EGaIn)涂覆在水性聚氨酯(WPU)改性的氨纶纤维上,然后进行热固化形成保护聚氨酯护套而制成的。该纤维为氨纶/WPU/EGaIn/聚氨酯(SWEP),共轴结构为氨纶芯、WPU改性层、LM导电层、聚氨酯护套四层。该纤维直径为(458.3±10.4)μm,线密度为(2.37±0.15)g/m, EGaIn涂层均匀。该纤维具有优异的导电性能,平均导电系数为(3 716.9±594.2)S/m。应变传感性能特别值得注意。以涤纶经纱和SWEP纬纱为原料,制备了5cm × 5cm的机织物。织物具有良好的透湿性[(536.06±33.15)g/(m2·h)],经多次加热后仍保持稳定的热致变色性能。这种先进的导电纤维的发展有望显著促进LM在可穿戴电子产品和智能纺织系统中的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
[Preparation and application of conductive fiber coated with liquid metal].

Flexible conductive fibers have been widely applied in wearable flexible sensing. However, exposed wearable flexible sensors based on liquid metal (LM) are prone to abrasion and significant conductivity degradation. This study presented a high-sensitivity LM conductive fiber with integration of strain sensing, electrical heating, and thermochromic capabilities, which was fabricated by coating eutectic gallium-indium (EGaIn) onto spandex fibers modified with waterborne polyurethane (WPU), followed by thermal curing to form a protective polyurethane sheath. This fiber, designated as Spandex/WPU/EGaIn/Polyurethane (SWEP), exhibits a four-layer coaxial structure: spandex core, WPU modification layer, LM conductive layer, and polyurethane protective sheath. The SWEP fiber had a diameter of (458.3 ± 10.4) μm, linear density of (2.37 ± 0.15) g/m, and uniform EGaIn coating. The fiber had excellent conductivity with an average value of (3 716.9 ± 594.2) S/m. The strain sensing performance was particularly noteworthy. A 5 cm × 5 cm woven fabric was fabricated using polyester warp yarns and SWEP weft yarns. The fabric exhibited satisfactory moisture permeability [(536.06 ± 33.15) g/(m 2·h)] and maintained stable thermochromic performance after repeated heating cycles. This advanced conductive fiber development is expected to significantly promote LM applications in wearable electronics and smart textile systems.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
生物医学工程学杂志
生物医学工程学杂志 Medicine-Medicine (all)
CiteScore
0.80
自引率
0.00%
发文量
4868
期刊介绍:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信