{"title":"基于机器学习技术的心血管和呼吸数据的人类压力分类。","authors":"Mahdis Yaghoubi, Navid Adib, Abolfazl Rezaei Monfared, Shirin Ashtari Tondashti, Saeed Akhavan","doi":"10.4103/jmss.jmss_71_24","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Stress, a widespread mental health concern, significantly impacts people well-being and performance. This study proposes a novel approach to stress detection by fusing cardiovascular and respiratory data.</p><p><strong>Methods: </strong>Fifteen participants underwent a mental stress induction task while their electrocardiogram (ECG) and respiration signals were recorded. A real-time peak detection algorithm was developed for ECG signal processing, and both time and frequency domain features were extracted from ECG and respiration signals. Various machine learning models, including Support Vector Machine, K-Nearest Neighbors, bagged decision trees, and random forests, were employed for classification, with accurate labeling achieved through the NASA-TLX questionnaire.</p><p><strong>Results: </strong>The results demonstrate that combining respiration and cardiovascular features significantly enhances stress classification performance compared to using each modality alone, achieving an accuracy of 95.6% ±1.7%. Forward feature selection identifies key discriminative features from both modalities.</p><p><strong>Conclusions: </strong>This study demonstrates the efficacy of multimodal physiological data integration for accurate stress detection, outperforming single-modality approaches and comparable studies in the literature. The findings highlight the potential of real-time monitoring systems in enhancing stress and health management.</p>","PeriodicalId":37680,"journal":{"name":"Journal of Medical Signals & Sensors","volume":"15 ","pages":"24"},"PeriodicalIF":1.1000,"publicationDate":"2025-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12373377/pdf/","citationCount":"0","resultStr":"{\"title\":\"Human Stress Classification Using Cardiovascular and Respiratory Data Based on Machine Learning Techniques.\",\"authors\":\"Mahdis Yaghoubi, Navid Adib, Abolfazl Rezaei Monfared, Shirin Ashtari Tondashti, Saeed Akhavan\",\"doi\":\"10.4103/jmss.jmss_71_24\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Stress, a widespread mental health concern, significantly impacts people well-being and performance. This study proposes a novel approach to stress detection by fusing cardiovascular and respiratory data.</p><p><strong>Methods: </strong>Fifteen participants underwent a mental stress induction task while their electrocardiogram (ECG) and respiration signals were recorded. A real-time peak detection algorithm was developed for ECG signal processing, and both time and frequency domain features were extracted from ECG and respiration signals. Various machine learning models, including Support Vector Machine, K-Nearest Neighbors, bagged decision trees, and random forests, were employed for classification, with accurate labeling achieved through the NASA-TLX questionnaire.</p><p><strong>Results: </strong>The results demonstrate that combining respiration and cardiovascular features significantly enhances stress classification performance compared to using each modality alone, achieving an accuracy of 95.6% ±1.7%. Forward feature selection identifies key discriminative features from both modalities.</p><p><strong>Conclusions: </strong>This study demonstrates the efficacy of multimodal physiological data integration for accurate stress detection, outperforming single-modality approaches and comparable studies in the literature. The findings highlight the potential of real-time monitoring systems in enhancing stress and health management.</p>\",\"PeriodicalId\":37680,\"journal\":{\"name\":\"Journal of Medical Signals & Sensors\",\"volume\":\"15 \",\"pages\":\"24\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2025-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12373377/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Medical Signals & Sensors\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4103/jmss.jmss_71_24\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Medical Signals & Sensors","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4103/jmss.jmss_71_24","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q4","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Human Stress Classification Using Cardiovascular and Respiratory Data Based on Machine Learning Techniques.
Background: Stress, a widespread mental health concern, significantly impacts people well-being and performance. This study proposes a novel approach to stress detection by fusing cardiovascular and respiratory data.
Methods: Fifteen participants underwent a mental stress induction task while their electrocardiogram (ECG) and respiration signals were recorded. A real-time peak detection algorithm was developed for ECG signal processing, and both time and frequency domain features were extracted from ECG and respiration signals. Various machine learning models, including Support Vector Machine, K-Nearest Neighbors, bagged decision trees, and random forests, were employed for classification, with accurate labeling achieved through the NASA-TLX questionnaire.
Results: The results demonstrate that combining respiration and cardiovascular features significantly enhances stress classification performance compared to using each modality alone, achieving an accuracy of 95.6% ±1.7%. Forward feature selection identifies key discriminative features from both modalities.
Conclusions: This study demonstrates the efficacy of multimodal physiological data integration for accurate stress detection, outperforming single-modality approaches and comparable studies in the literature. The findings highlight the potential of real-time monitoring systems in enhancing stress and health management.
期刊介绍:
JMSS is an interdisciplinary journal that incorporates all aspects of the biomedical engineering including bioelectrics, bioinformatics, medical physics, health technology assessment, etc. Subject areas covered by the journal include: - Bioelectric: Bioinstruments Biosensors Modeling Biomedical signal processing Medical image analysis and processing Medical imaging devices Control of biological systems Neuromuscular systems Cognitive sciences Telemedicine Robotic Medical ultrasonography Bioelectromagnetics Electrophysiology Cell tracking - Bioinformatics and medical informatics: Analysis of biological data Data mining Stochastic modeling Computational genomics Artificial intelligence & fuzzy Applications Medical softwares Bioalgorithms Electronic health - Biophysics and medical physics: Computed tomography Radiation therapy Laser therapy - Education in biomedical engineering - Health technology assessment - Standard in biomedical engineering.