基于机器学习技术的心血管和呼吸数据的人类压力分类。

IF 1.1 Q4 ENGINEERING, BIOMEDICAL
Journal of Medical Signals & Sensors Pub Date : 2025-08-06 eCollection Date: 2025-01-01 DOI:10.4103/jmss.jmss_71_24
Mahdis Yaghoubi, Navid Adib, Abolfazl Rezaei Monfared, Shirin Ashtari Tondashti, Saeed Akhavan
{"title":"基于机器学习技术的心血管和呼吸数据的人类压力分类。","authors":"Mahdis Yaghoubi, Navid Adib, Abolfazl Rezaei Monfared, Shirin Ashtari Tondashti, Saeed Akhavan","doi":"10.4103/jmss.jmss_71_24","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Stress, a widespread mental health concern, significantly impacts people well-being and performance. This study proposes a novel approach to stress detection by fusing cardiovascular and respiratory data.</p><p><strong>Methods: </strong>Fifteen participants underwent a mental stress induction task while their electrocardiogram (ECG) and respiration signals were recorded. A real-time peak detection algorithm was developed for ECG signal processing, and both time and frequency domain features were extracted from ECG and respiration signals. Various machine learning models, including Support Vector Machine, K-Nearest Neighbors, bagged decision trees, and random forests, were employed for classification, with accurate labeling achieved through the NASA-TLX questionnaire.</p><p><strong>Results: </strong>The results demonstrate that combining respiration and cardiovascular features significantly enhances stress classification performance compared to using each modality alone, achieving an accuracy of 95.6% ±1.7%. Forward feature selection identifies key discriminative features from both modalities.</p><p><strong>Conclusions: </strong>This study demonstrates the efficacy of multimodal physiological data integration for accurate stress detection, outperforming single-modality approaches and comparable studies in the literature. The findings highlight the potential of real-time monitoring systems in enhancing stress and health management.</p>","PeriodicalId":37680,"journal":{"name":"Journal of Medical Signals & Sensors","volume":"15 ","pages":"24"},"PeriodicalIF":1.1000,"publicationDate":"2025-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12373377/pdf/","citationCount":"0","resultStr":"{\"title\":\"Human Stress Classification Using Cardiovascular and Respiratory Data Based on Machine Learning Techniques.\",\"authors\":\"Mahdis Yaghoubi, Navid Adib, Abolfazl Rezaei Monfared, Shirin Ashtari Tondashti, Saeed Akhavan\",\"doi\":\"10.4103/jmss.jmss_71_24\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Stress, a widespread mental health concern, significantly impacts people well-being and performance. This study proposes a novel approach to stress detection by fusing cardiovascular and respiratory data.</p><p><strong>Methods: </strong>Fifteen participants underwent a mental stress induction task while their electrocardiogram (ECG) and respiration signals were recorded. A real-time peak detection algorithm was developed for ECG signal processing, and both time and frequency domain features were extracted from ECG and respiration signals. Various machine learning models, including Support Vector Machine, K-Nearest Neighbors, bagged decision trees, and random forests, were employed for classification, with accurate labeling achieved through the NASA-TLX questionnaire.</p><p><strong>Results: </strong>The results demonstrate that combining respiration and cardiovascular features significantly enhances stress classification performance compared to using each modality alone, achieving an accuracy of 95.6% ±1.7%. Forward feature selection identifies key discriminative features from both modalities.</p><p><strong>Conclusions: </strong>This study demonstrates the efficacy of multimodal physiological data integration for accurate stress detection, outperforming single-modality approaches and comparable studies in the literature. The findings highlight the potential of real-time monitoring systems in enhancing stress and health management.</p>\",\"PeriodicalId\":37680,\"journal\":{\"name\":\"Journal of Medical Signals & Sensors\",\"volume\":\"15 \",\"pages\":\"24\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2025-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12373377/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Medical Signals & Sensors\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4103/jmss.jmss_71_24\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Medical Signals & Sensors","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4103/jmss.jmss_71_24","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q4","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

背景:压力是一种广泛存在的心理健康问题,对人们的健康和表现有重大影响。本研究提出了一种融合心血管和呼吸数据的应力检测新方法。方法:15名被试进行心理应激诱导实验,同时记录他们的心电图和呼吸信号。提出了一种实时心电信号峰值检测算法,对心电信号和呼吸信号进行时域和频域特征提取。采用支持向量机(Support Vector machine)、k近邻(K-Nearest Neighbors)、袋装决策树(bagging decision trees)和随机森林(random forests)等多种机器学习模型进行分类,并通过NASA-TLX问卷进行准确标注。结果:结果表明,与单独使用每种模式相比,结合呼吸和心血管特征可显著提高应激分类性能,准确率为95.6%±1.7%。前向特征选择从两种模式中识别关键的判别特征。结论:本研究证明了多模态生理数据整合对准确应力检测的有效性,优于单模态方法和文献中的可比研究。研究结果强调了实时监测系统在加强压力和健康管理方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Human Stress Classification Using Cardiovascular and Respiratory Data Based on Machine Learning Techniques.

Human Stress Classification Using Cardiovascular and Respiratory Data Based on Machine Learning Techniques.

Human Stress Classification Using Cardiovascular and Respiratory Data Based on Machine Learning Techniques.

Human Stress Classification Using Cardiovascular and Respiratory Data Based on Machine Learning Techniques.

Background: Stress, a widespread mental health concern, significantly impacts people well-being and performance. This study proposes a novel approach to stress detection by fusing cardiovascular and respiratory data.

Methods: Fifteen participants underwent a mental stress induction task while their electrocardiogram (ECG) and respiration signals were recorded. A real-time peak detection algorithm was developed for ECG signal processing, and both time and frequency domain features were extracted from ECG and respiration signals. Various machine learning models, including Support Vector Machine, K-Nearest Neighbors, bagged decision trees, and random forests, were employed for classification, with accurate labeling achieved through the NASA-TLX questionnaire.

Results: The results demonstrate that combining respiration and cardiovascular features significantly enhances stress classification performance compared to using each modality alone, achieving an accuracy of 95.6% ±1.7%. Forward feature selection identifies key discriminative features from both modalities.

Conclusions: This study demonstrates the efficacy of multimodal physiological data integration for accurate stress detection, outperforming single-modality approaches and comparable studies in the literature. The findings highlight the potential of real-time monitoring systems in enhancing stress and health management.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Medical Signals & Sensors
Journal of Medical Signals & Sensors ENGINEERING, BIOMEDICAL-
CiteScore
2.30
自引率
0.00%
发文量
53
审稿时长
33 weeks
期刊介绍: JMSS is an interdisciplinary journal that incorporates all aspects of the biomedical engineering including bioelectrics, bioinformatics, medical physics, health technology assessment, etc. Subject areas covered by the journal include: - Bioelectric: Bioinstruments Biosensors Modeling Biomedical signal processing Medical image analysis and processing Medical imaging devices Control of biological systems Neuromuscular systems Cognitive sciences Telemedicine Robotic Medical ultrasonography Bioelectromagnetics Electrophysiology Cell tracking - Bioinformatics and medical informatics: Analysis of biological data Data mining Stochastic modeling Computational genomics Artificial intelligence & fuzzy Applications Medical softwares Bioalgorithms Electronic health - Biophysics and medical physics: Computed tomography Radiation therapy Laser therapy - Education in biomedical engineering - Health technology assessment - Standard in biomedical engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信