结构种群时变生殖数估计的实际应用。

Q3 Mathematics
Epidemiologic Methods Pub Date : 2025-01-01 Epub Date: 2025-01-06 DOI:10.1515/em-2024-0020
Erin Clancey, Eric T Lofgren
{"title":"结构种群时变生殖数估计的实际应用。","authors":"Erin Clancey, Eric T Lofgren","doi":"10.1515/em-2024-0020","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>EpiEstim is a popular statistical framework designed to produce real-time estimates of the time-varying reproductive number, <math> <msub><mrow><mi>ℛ</mi></mrow> <mrow><mi>t</mi></mrow> </msub> </math> . However, the methods in EpiEstim have not been tested in small, non-randomly mixing populations to determine if the resulting <math> <msub> <mrow> <mover><mrow><mi>ℛ</mi></mrow> <mi>ˆ</mi></mover> </mrow> <mrow><mi>t</mi></mrow> </msub> </math> estimates are temporally biased. Thus, we evaluate the temporal performance of EpiEstim <math> <msub> <mrow> <mover><mrow><mi>ℛ</mi></mrow> <mi>ˆ</mi></mover> </mrow> <mrow><mi>t</mi></mrow> </msub> </math> estimates when population structure is present, and then demonstrate how to recover temporal accuracy using an approximation with EpiEstim.</p><p><strong>Methods: </strong>Following a real-world example of a COVID-19 outbreak in a small university town, we generate simulated case report data from a two-population mechanistic model with an explicit generation interval distribution and expression to compute true <math> <msub><mrow><mi>ℛ</mi></mrow> <mrow><mi>t</mi></mrow> </msub> </math> . To quantify the temporal bias, we compare the time points when true <math> <msub><mrow><mi>ℛ</mi></mrow> <mrow><mi>t</mi></mrow> </msub> </math> and estimated <math> <msub> <mrow> <mover><mrow><mi>ℛ</mi></mrow> <mi>ˆ</mi></mover> </mrow> <mrow><mi>t</mi></mrow> </msub> </math> from EpiEstim fall below the critical threshold of 1.</p><p><strong>Results: </strong>When population structure is present but not accounted for <math> <msub> <mrow> <mover><mrow><mi>ℛ</mi></mrow> <mi>ˆ</mi></mover> </mrow> <mrow><mi>t</mi></mrow> </msub> </math> estimates from EpiEstim prematurely fall below 1. When incidence data is aggregated over weeks the estimates from EpiEstim fall below the critical threshold at a later time point than estimates from daily data, however, population structure does not further affect timing differences between aggregated and daily data. Last, we show it is possible to recover the correct timing when by using the lagging subpopulation outbreak to estimate <math> <msub> <mrow> <mover><mrow><mi>ℛ</mi></mrow> <mi>ˆ</mi></mover> </mrow> <mrow><mi>t</mi></mrow> </msub> </math> for the total population with EpiEstim.</p><p><strong>Conclusions: </strong><math> <msub><mrow><mi>ℛ</mi></mrow> <mrow><mi>t</mi></mrow> </msub> </math> is a key parameter used for epidemic response. Since population structure can bias <math> <msub><mrow><mi>ℛ</mi></mrow> <mrow><mi>t</mi></mrow> </msub> </math> near the critical threshold of 1, EpiEstim should be prudently applied to incidence data from structured populations.</p>","PeriodicalId":37999,"journal":{"name":"Epidemiologic Methods","volume":"14 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12383560/pdf/","citationCount":"0","resultStr":"{\"title\":\"Time-varying reproductive number estimation for practical application in structured populations.\",\"authors\":\"Erin Clancey, Eric T Lofgren\",\"doi\":\"10.1515/em-2024-0020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objectives: </strong>EpiEstim is a popular statistical framework designed to produce real-time estimates of the time-varying reproductive number, <math> <msub><mrow><mi>ℛ</mi></mrow> <mrow><mi>t</mi></mrow> </msub> </math> . However, the methods in EpiEstim have not been tested in small, non-randomly mixing populations to determine if the resulting <math> <msub> <mrow> <mover><mrow><mi>ℛ</mi></mrow> <mi>ˆ</mi></mover> </mrow> <mrow><mi>t</mi></mrow> </msub> </math> estimates are temporally biased. Thus, we evaluate the temporal performance of EpiEstim <math> <msub> <mrow> <mover><mrow><mi>ℛ</mi></mrow> <mi>ˆ</mi></mover> </mrow> <mrow><mi>t</mi></mrow> </msub> </math> estimates when population structure is present, and then demonstrate how to recover temporal accuracy using an approximation with EpiEstim.</p><p><strong>Methods: </strong>Following a real-world example of a COVID-19 outbreak in a small university town, we generate simulated case report data from a two-population mechanistic model with an explicit generation interval distribution and expression to compute true <math> <msub><mrow><mi>ℛ</mi></mrow> <mrow><mi>t</mi></mrow> </msub> </math> . To quantify the temporal bias, we compare the time points when true <math> <msub><mrow><mi>ℛ</mi></mrow> <mrow><mi>t</mi></mrow> </msub> </math> and estimated <math> <msub> <mrow> <mover><mrow><mi>ℛ</mi></mrow> <mi>ˆ</mi></mover> </mrow> <mrow><mi>t</mi></mrow> </msub> </math> from EpiEstim fall below the critical threshold of 1.</p><p><strong>Results: </strong>When population structure is present but not accounted for <math> <msub> <mrow> <mover><mrow><mi>ℛ</mi></mrow> <mi>ˆ</mi></mover> </mrow> <mrow><mi>t</mi></mrow> </msub> </math> estimates from EpiEstim prematurely fall below 1. When incidence data is aggregated over weeks the estimates from EpiEstim fall below the critical threshold at a later time point than estimates from daily data, however, population structure does not further affect timing differences between aggregated and daily data. Last, we show it is possible to recover the correct timing when by using the lagging subpopulation outbreak to estimate <math> <msub> <mrow> <mover><mrow><mi>ℛ</mi></mrow> <mi>ˆ</mi></mover> </mrow> <mrow><mi>t</mi></mrow> </msub> </math> for the total population with EpiEstim.</p><p><strong>Conclusions: </strong><math> <msub><mrow><mi>ℛ</mi></mrow> <mrow><mi>t</mi></mrow> </msub> </math> is a key parameter used for epidemic response. Since population structure can bias <math> <msub><mrow><mi>ℛ</mi></mrow> <mrow><mi>t</mi></mrow> </msub> </math> near the critical threshold of 1, EpiEstim should be prudently applied to incidence data from structured populations.</p>\",\"PeriodicalId\":37999,\"journal\":{\"name\":\"Epidemiologic Methods\",\"volume\":\"14 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12383560/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Epidemiologic Methods\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/em-2024-0020\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/6 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Epidemiologic Methods","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/em-2024-0020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/6 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

目的:EpiEstim是一个流行的统计框架,用于实时估计随时间变化的繁殖数。然而,EpiEstim中的方法还没有在小的、非随机混合的人群中进行测试,以确定所得的估计值是否有时间偏差。因此,我们评估了在人口结构存在时EpiEstim的时间性能,然后演示了如何使用EpiEstim近似恢复时间精度。方法:以某大学城新冠肺炎疫情为例,采用明确的生成间隔分布和表达式生成双种群机制模型,生成模拟病例报告数据,以计算真实的指数。为了量化时间偏差,我们比较了从EpiEstim得到的真实的和估计的分数低于临界阈值1的时间点。结果:当种群结构存在但未被解释时,从EpiEstim中估计的系数过早地低于1。当发病率数据在数周内汇总时,EpiEstim的估计值在较晚的时间点低于每日数据估计值的临界阈值,然而,人口结构不会进一步影响汇总数据和每日数据之间的时间差异。最后,我们证明了利用滞后亚种群爆发来估计EpiEstim总种群的t1时,可以恢复正确的时间。结论:该参数可作为疫情应对的关键参数。由于种群结构会使指数偏离临界阈值1附近,因此应谨慎地将EpiEstim应用于结构化种群的发病率数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Time-varying reproductive number estimation for practical application in structured populations.

Time-varying reproductive number estimation for practical application in structured populations.

Time-varying reproductive number estimation for practical application in structured populations.

Time-varying reproductive number estimation for practical application in structured populations.

Objectives: EpiEstim is a popular statistical framework designed to produce real-time estimates of the time-varying reproductive number, t . However, the methods in EpiEstim have not been tested in small, non-randomly mixing populations to determine if the resulting ˆ t estimates are temporally biased. Thus, we evaluate the temporal performance of EpiEstim ˆ t estimates when population structure is present, and then demonstrate how to recover temporal accuracy using an approximation with EpiEstim.

Methods: Following a real-world example of a COVID-19 outbreak in a small university town, we generate simulated case report data from a two-population mechanistic model with an explicit generation interval distribution and expression to compute true t . To quantify the temporal bias, we compare the time points when true t and estimated ˆ t from EpiEstim fall below the critical threshold of 1.

Results: When population structure is present but not accounted for ˆ t estimates from EpiEstim prematurely fall below 1. When incidence data is aggregated over weeks the estimates from EpiEstim fall below the critical threshold at a later time point than estimates from daily data, however, population structure does not further affect timing differences between aggregated and daily data. Last, we show it is possible to recover the correct timing when by using the lagging subpopulation outbreak to estimate ˆ t for the total population with EpiEstim.

Conclusions: t is a key parameter used for epidemic response. Since population structure can bias t near the critical threshold of 1, EpiEstim should be prudently applied to incidence data from structured populations.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Epidemiologic Methods
Epidemiologic Methods Mathematics-Applied Mathematics
CiteScore
2.10
自引率
0.00%
发文量
7
期刊介绍: Epidemiologic Methods (EM) seeks contributions comparable to those of the leading epidemiologic journals, but also invites papers that may be more technical or of greater length than what has traditionally been allowed by journals in epidemiology. Applications and examples with real data to illustrate methodology are strongly encouraged but not required. Topics. genetic epidemiology, infectious disease, pharmaco-epidemiology, ecologic studies, environmental exposures, screening, surveillance, social networks, comparative effectiveness, statistical modeling, causal inference, measurement error, study design, meta-analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信