{"title":"增强神经康复的洞察力:关于桥接人工和生物神经网络的路径。","authors":"Abdullatif Baba","doi":"10.1186/s40708-025-00266-x","DOIUrl":null,"url":null,"abstract":"<p><p>This paper introduces the conceptual parallel between the ANN training process and the learning mechanisms of the human brain. Then, we briefly discuss a set of recently achieved experimental findings from a prior study that delves into various scenarios, aiding in comprehending the functionality of impaired or damaged neurons within a neural system. The key contribution of this paper is to present a novel variant of the Adam optimizer that incorporates a dynamic momentum adjustment factor, adaptive learning rate, and elastic weight consolidation technique. This enhanced version draws inspiration from biological processes to improve learning stability in artificial neural networks, with conceivable relevance to neural adaptation and rehabilitation research.</p>","PeriodicalId":37465,"journal":{"name":"Brain Informatics","volume":"12 1","pages":"21"},"PeriodicalIF":4.5000,"publicationDate":"2025-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12397469/pdf/","citationCount":"0","resultStr":"{\"title\":\"Enhancing neural rehabilitation insights: on the path of bridging artificial and biological neural networks.\",\"authors\":\"Abdullatif Baba\",\"doi\":\"10.1186/s40708-025-00266-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This paper introduces the conceptual parallel between the ANN training process and the learning mechanisms of the human brain. Then, we briefly discuss a set of recently achieved experimental findings from a prior study that delves into various scenarios, aiding in comprehending the functionality of impaired or damaged neurons within a neural system. The key contribution of this paper is to present a novel variant of the Adam optimizer that incorporates a dynamic momentum adjustment factor, adaptive learning rate, and elastic weight consolidation technique. This enhanced version draws inspiration from biological processes to improve learning stability in artificial neural networks, with conceivable relevance to neural adaptation and rehabilitation research.</p>\",\"PeriodicalId\":37465,\"journal\":{\"name\":\"Brain Informatics\",\"volume\":\"12 1\",\"pages\":\"21\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2025-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12397469/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Brain Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/s40708-025-00266-x\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s40708-025-00266-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Computer Science","Score":null,"Total":0}
Enhancing neural rehabilitation insights: on the path of bridging artificial and biological neural networks.
This paper introduces the conceptual parallel between the ANN training process and the learning mechanisms of the human brain. Then, we briefly discuss a set of recently achieved experimental findings from a prior study that delves into various scenarios, aiding in comprehending the functionality of impaired or damaged neurons within a neural system. The key contribution of this paper is to present a novel variant of the Adam optimizer that incorporates a dynamic momentum adjustment factor, adaptive learning rate, and elastic weight consolidation technique. This enhanced version draws inspiration from biological processes to improve learning stability in artificial neural networks, with conceivable relevance to neural adaptation and rehabilitation research.
期刊介绍:
Brain Informatics is an international, peer-reviewed, interdisciplinary open-access journal published under the brand SpringerOpen, which provides a unique platform for researchers and practitioners to disseminate original research on computational and informatics technologies related to brain. This journal addresses the computational, cognitive, physiological, biological, physical, ecological and social perspectives of brain informatics. It also welcomes emerging information technologies and advanced neuro-imaging technologies, such as big data analytics and interactive knowledge discovery related to various large-scale brain studies and their applications. This journal will publish high-quality original research papers, brief reports and critical reviews in all theoretical, technological, clinical and interdisciplinary studies that make up the field of brain informatics and its applications in brain-machine intelligence, brain-inspired intelligent systems, mental health and brain disorders, etc. The scope of papers includes the following five tracks: Track 1: Cognitive and Computational Foundations of Brain Science Track 2: Human Information Processing Systems Track 3: Brain Big Data Analytics, Curation and Management Track 4: Informatics Paradigms for Brain and Mental Health Research Track 5: Brain-Machine Intelligence and Brain-Inspired Computing