动态关注池化网络:肺癌分类的混合轻量级深度模型。

IF 2.7 Q3 IMAGING SCIENCE & PHOTOGRAPHIC TECHNOLOGY
Williams Ayivi, Xiaoling Zhang, Wisdom Xornam Ativi, Francis Sam, Franck A P Kouassi
{"title":"动态关注池化网络:肺癌分类的混合轻量级深度模型。","authors":"Williams Ayivi, Xiaoling Zhang, Wisdom Xornam Ativi, Francis Sam, Franck A P Kouassi","doi":"10.3390/jimaging11080283","DOIUrl":null,"url":null,"abstract":"<p><p>Lung cancer is one of the leading causes of cancer-related mortality worldwide. The diagnosis of this disease remains a challenge due to the subtle and ambiguous nature of early-stage symptoms and imaging findings. Deep learning approaches, specifically Convolutional Neural Networks (CNNs), have significantly advanced medical image analysis. However, conventional architectures such as ResNet50 that rely on first-order pooling often fall short. This study aims to overcome the limitations of CNNs in lung cancer classification by proposing a novel and dynamic model named LungSE-SOP. The model is based on Second-Order Pooling (SOP) and Squeeze-and-Excitation Networks (SENet) within a ResNet50 backbone to improve feature representation and class separation. A novel Dynamic Feature Enhancement (DFE) module is also introduced, which dynamically adjusts the flow of information through SOP and SENet blocks based on learned importance scores. The model was trained using a publicly available IQ-OTH/NCCD lung cancer dataset. The performance of the model was assessed using various metrics, including the accuracy, precision, recall, F1-score, ROC curves, and confidence intervals. For multiclass tumor classification, our model achieved 98.6% accuracy for benign, 98.7% for malignant, and 99.9% for normal cases. Corresponding F1-scores were 99.2%, 99.8%, and 99.9%, respectively, reflecting the model's high precision and recall across all tumor types and its strong potential for clinical deployment.</p>","PeriodicalId":37035,"journal":{"name":"Journal of Imaging","volume":"11 8","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12387460/pdf/","citationCount":"0","resultStr":"{\"title\":\"Dynamic-Attentive Pooling Networks: A Hybrid Lightweight Deep Model for Lung Cancer Classification.\",\"authors\":\"Williams Ayivi, Xiaoling Zhang, Wisdom Xornam Ativi, Francis Sam, Franck A P Kouassi\",\"doi\":\"10.3390/jimaging11080283\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Lung cancer is one of the leading causes of cancer-related mortality worldwide. The diagnosis of this disease remains a challenge due to the subtle and ambiguous nature of early-stage symptoms and imaging findings. Deep learning approaches, specifically Convolutional Neural Networks (CNNs), have significantly advanced medical image analysis. However, conventional architectures such as ResNet50 that rely on first-order pooling often fall short. This study aims to overcome the limitations of CNNs in lung cancer classification by proposing a novel and dynamic model named LungSE-SOP. The model is based on Second-Order Pooling (SOP) and Squeeze-and-Excitation Networks (SENet) within a ResNet50 backbone to improve feature representation and class separation. A novel Dynamic Feature Enhancement (DFE) module is also introduced, which dynamically adjusts the flow of information through SOP and SENet blocks based on learned importance scores. The model was trained using a publicly available IQ-OTH/NCCD lung cancer dataset. The performance of the model was assessed using various metrics, including the accuracy, precision, recall, F1-score, ROC curves, and confidence intervals. For multiclass tumor classification, our model achieved 98.6% accuracy for benign, 98.7% for malignant, and 99.9% for normal cases. Corresponding F1-scores were 99.2%, 99.8%, and 99.9%, respectively, reflecting the model's high precision and recall across all tumor types and its strong potential for clinical deployment.</p>\",\"PeriodicalId\":37035,\"journal\":{\"name\":\"Journal of Imaging\",\"volume\":\"11 8\",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12387460/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Imaging\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/jimaging11080283\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"IMAGING SCIENCE & PHOTOGRAPHIC TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Imaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/jimaging11080283","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"IMAGING SCIENCE & PHOTOGRAPHIC TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

肺癌是全球癌症相关死亡的主要原因之一。由于早期症状和影像学表现的微妙和模糊性质,这种疾病的诊断仍然是一个挑战。深度学习方法,特别是卷积神经网络(cnn),在医学图像分析方面有着显著的进步。然而,传统的架构,如ResNet50,依赖于一阶池往往是不足的。本研究旨在克服cnn在肺癌分类中的局限性,提出一种新的动态模型lunse - sop。该模型基于ResNet50骨干网中的二阶池化(SOP)和挤压激励网络(SENet)来改进特征表示和类分离。本文还介绍了一种新的动态特征增强(DFE)模块,该模块根据学习到的重要性分数动态调整SOP和SENet块之间的信息流。该模型使用公开可用的IQ-OTH/NCCD肺癌数据集进行训练。使用各种指标评估模型的性能,包括准确性、精密度、召回率、f1评分、ROC曲线和置信区间。对于多类别肿瘤的分类,我们的模型对良性病例的准确率为98.6%,对恶性病例的准确率为98.7%,对正常病例的准确率为99.9%。相应的f1评分分别为99.2%、99.8%和99.9%,反映了该模型在所有肿瘤类型中的高精度和召回率,具有很强的临床应用潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dynamic-Attentive Pooling Networks: A Hybrid Lightweight Deep Model for Lung Cancer Classification.

Lung cancer is one of the leading causes of cancer-related mortality worldwide. The diagnosis of this disease remains a challenge due to the subtle and ambiguous nature of early-stage symptoms and imaging findings. Deep learning approaches, specifically Convolutional Neural Networks (CNNs), have significantly advanced medical image analysis. However, conventional architectures such as ResNet50 that rely on first-order pooling often fall short. This study aims to overcome the limitations of CNNs in lung cancer classification by proposing a novel and dynamic model named LungSE-SOP. The model is based on Second-Order Pooling (SOP) and Squeeze-and-Excitation Networks (SENet) within a ResNet50 backbone to improve feature representation and class separation. A novel Dynamic Feature Enhancement (DFE) module is also introduced, which dynamically adjusts the flow of information through SOP and SENet blocks based on learned importance scores. The model was trained using a publicly available IQ-OTH/NCCD lung cancer dataset. The performance of the model was assessed using various metrics, including the accuracy, precision, recall, F1-score, ROC curves, and confidence intervals. For multiclass tumor classification, our model achieved 98.6% accuracy for benign, 98.7% for malignant, and 99.9% for normal cases. Corresponding F1-scores were 99.2%, 99.8%, and 99.9%, respectively, reflecting the model's high precision and recall across all tumor types and its strong potential for clinical deployment.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Imaging
Journal of Imaging Medicine-Radiology, Nuclear Medicine and Imaging
CiteScore
5.90
自引率
6.20%
发文量
303
审稿时长
7 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信