组织病理图像上使用ResNet架构对乳腺癌亚型进行多类分类。

IF 2.7 Q3 IMAGING SCIENCE & PHOTOGRAPHIC TECHNOLOGY
Akshat Desai, Rakeshkumar Mahto
{"title":"组织病理图像上使用ResNet架构对乳腺癌亚型进行多类分类。","authors":"Akshat Desai, Rakeshkumar Mahto","doi":"10.3390/jimaging11080284","DOIUrl":null,"url":null,"abstract":"<p><p>Breast cancer is a significant cause of cancer-related mortality among women around the globe, underscoring the need for early and accurate diagnosis. Typically, histopathological analysis of biopsy slides is utilized for tumor classification. However, it is labor-intensive, subjective, and often affected by inter-observer variability. Therefore, this study explores a deep learning-based, multi-class classification framework for distinguishing breast cancer subtypes using convolutional neural networks (CNNs). Unlike previous work using the popular BreaKHis dataset, where binary classification models were applied, in this work, we differentiate eight histopathological subtypes: four benign (adenosis, fibroadenoma, phyllodes tumor, and tubular adenoma) and four malignant (ductal carcinoma, lobular carcinoma, mucinous carcinoma, and papillary carcinoma). This work leverages transfer learning with ImageNet-pretrained ResNet architectures (ResNet-18, ResNet-34, and ResNet-50) and extensive data augmentation to enhance classification accuracy and robustness across magnifications. Among the ResNet models, ResNet-50 achieved the best performance, attaining a maximum accuracy of 92.42%, an AUC-ROC of 99.86%, and an average specificity of 98.61%. These findings validate the combined effectiveness of CNNs and transfer learning in capturing fine-grained histopathological features required for accurate breast cancer subtype classification.</p>","PeriodicalId":37035,"journal":{"name":"Journal of Imaging","volume":"11 8","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12387189/pdf/","citationCount":"0","resultStr":"{\"title\":\"Multi-Class Classification of Breast Cancer Subtypes Using ResNet Architectures on Histopathological Images.\",\"authors\":\"Akshat Desai, Rakeshkumar Mahto\",\"doi\":\"10.3390/jimaging11080284\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Breast cancer is a significant cause of cancer-related mortality among women around the globe, underscoring the need for early and accurate diagnosis. Typically, histopathological analysis of biopsy slides is utilized for tumor classification. However, it is labor-intensive, subjective, and often affected by inter-observer variability. Therefore, this study explores a deep learning-based, multi-class classification framework for distinguishing breast cancer subtypes using convolutional neural networks (CNNs). Unlike previous work using the popular BreaKHis dataset, where binary classification models were applied, in this work, we differentiate eight histopathological subtypes: four benign (adenosis, fibroadenoma, phyllodes tumor, and tubular adenoma) and four malignant (ductal carcinoma, lobular carcinoma, mucinous carcinoma, and papillary carcinoma). This work leverages transfer learning with ImageNet-pretrained ResNet architectures (ResNet-18, ResNet-34, and ResNet-50) and extensive data augmentation to enhance classification accuracy and robustness across magnifications. Among the ResNet models, ResNet-50 achieved the best performance, attaining a maximum accuracy of 92.42%, an AUC-ROC of 99.86%, and an average specificity of 98.61%. These findings validate the combined effectiveness of CNNs and transfer learning in capturing fine-grained histopathological features required for accurate breast cancer subtype classification.</p>\",\"PeriodicalId\":37035,\"journal\":{\"name\":\"Journal of Imaging\",\"volume\":\"11 8\",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12387189/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Imaging\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/jimaging11080284\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"IMAGING SCIENCE & PHOTOGRAPHIC TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Imaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/jimaging11080284","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"IMAGING SCIENCE & PHOTOGRAPHIC TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

乳腺癌是全球妇女癌症相关死亡的一个重要原因,强调了早期和准确诊断的必要性。通常,活检切片的组织病理学分析用于肿瘤分类。然而,它是劳动密集型的,主观的,并且经常受到观察者之间可变性的影响。因此,本研究探索了一种基于深度学习的多类分类框架,用于使用卷积神经网络(cnn)区分乳腺癌亚型。与之前使用流行的BreaKHis数据集的工作不同,在这项工作中,我们区分了八种组织病理学亚型:四种良性(腺病、纤维腺瘤、叶状瘤和管状腺瘤)和四种恶性(导管癌、小叶癌、粘液癌和乳头状癌)。这项工作利用迁移学习与imagenet预训练的ResNet架构(ResNet-18, ResNet-34和ResNet-50)和广泛的数据增强来提高分类精度和鲁棒性。在ResNet模型中,ResNet-50表现最好,最大准确率为92.42%,AUC-ROC为99.86%,平均特异性为98.61%。这些发现验证了cnn和迁移学习在捕获精确乳腺癌亚型分类所需的细粒度组织病理学特征方面的联合有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multi-Class Classification of Breast Cancer Subtypes Using ResNet Architectures on Histopathological Images.

Breast cancer is a significant cause of cancer-related mortality among women around the globe, underscoring the need for early and accurate diagnosis. Typically, histopathological analysis of biopsy slides is utilized for tumor classification. However, it is labor-intensive, subjective, and often affected by inter-observer variability. Therefore, this study explores a deep learning-based, multi-class classification framework for distinguishing breast cancer subtypes using convolutional neural networks (CNNs). Unlike previous work using the popular BreaKHis dataset, where binary classification models were applied, in this work, we differentiate eight histopathological subtypes: four benign (adenosis, fibroadenoma, phyllodes tumor, and tubular adenoma) and four malignant (ductal carcinoma, lobular carcinoma, mucinous carcinoma, and papillary carcinoma). This work leverages transfer learning with ImageNet-pretrained ResNet architectures (ResNet-18, ResNet-34, and ResNet-50) and extensive data augmentation to enhance classification accuracy and robustness across magnifications. Among the ResNet models, ResNet-50 achieved the best performance, attaining a maximum accuracy of 92.42%, an AUC-ROC of 99.86%, and an average specificity of 98.61%. These findings validate the combined effectiveness of CNNs and transfer learning in capturing fine-grained histopathological features required for accurate breast cancer subtype classification.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Imaging
Journal of Imaging Medicine-Radiology, Nuclear Medicine and Imaging
CiteScore
5.90
自引率
6.20%
发文量
303
审稿时长
7 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信