{"title":"基于YOLOv8的改进小目标检测算法msconvo - yolo","authors":"Linli Yang, Barmak Honarvar Shakibaei Asli","doi":"10.3390/jimaging11080285","DOIUrl":null,"url":null,"abstract":"<p><p>Small object detection in UAV aerial imagery presents significant challenges due to scale variations, sparse feature representation, and complex backgrounds. To address these issues, this paper focuses on practical engineering improvements to the existing YOLOv8s framework, rather than proposing a fundamentally new algorithm. We introduce MultiScaleConv-YOLO (MSConv-YOLO), an enhanced model that integrates well-established techniques to improve detection performance for small targets. Specifically, the proposed approach introduces three key improvements: (1) a MultiScaleConv (MSConv) module that combines depthwise separable and dilated convolutions with varying dilation rates, enhancing multi-scale feature extraction while maintaining efficiency; (2) the replacement of CIoU with WIoU v3 as the bounding box regression loss, which incorporates a dynamic non-monotonic focusing mechanism to improve localization for small targets; and (3) the addition of a high-resolution detection head in the neck-head structure, leveraging FPN and PAN to preserve fine-grained features and ensure full-scale coverage. Experimental results on the VisDrone2019 dataset show that MSConv-YOLO outperforms the baseline YOLOv8s by achieving a 6.9% improvement in mAP@0.5 and a 6.3% gain in recall. Ablation studies further validate the complementary impact of each enhancement. This paper presents practical and effective engineering enhancements to small object detection in UAV scenarios, offering an improved solution without introducing entirely new theoretical constructs. Future work will focus on lightweight deployment and adaptation to more complex environments.</p>","PeriodicalId":37035,"journal":{"name":"Journal of Imaging","volume":"11 8","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12387663/pdf/","citationCount":"0","resultStr":"{\"title\":\"MSConv-YOLO: An Improved Small Target Detection Algorithm Based on YOLOv8.\",\"authors\":\"Linli Yang, Barmak Honarvar Shakibaei Asli\",\"doi\":\"10.3390/jimaging11080285\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Small object detection in UAV aerial imagery presents significant challenges due to scale variations, sparse feature representation, and complex backgrounds. To address these issues, this paper focuses on practical engineering improvements to the existing YOLOv8s framework, rather than proposing a fundamentally new algorithm. We introduce MultiScaleConv-YOLO (MSConv-YOLO), an enhanced model that integrates well-established techniques to improve detection performance for small targets. Specifically, the proposed approach introduces three key improvements: (1) a MultiScaleConv (MSConv) module that combines depthwise separable and dilated convolutions with varying dilation rates, enhancing multi-scale feature extraction while maintaining efficiency; (2) the replacement of CIoU with WIoU v3 as the bounding box regression loss, which incorporates a dynamic non-monotonic focusing mechanism to improve localization for small targets; and (3) the addition of a high-resolution detection head in the neck-head structure, leveraging FPN and PAN to preserve fine-grained features and ensure full-scale coverage. Experimental results on the VisDrone2019 dataset show that MSConv-YOLO outperforms the baseline YOLOv8s by achieving a 6.9% improvement in mAP@0.5 and a 6.3% gain in recall. Ablation studies further validate the complementary impact of each enhancement. This paper presents practical and effective engineering enhancements to small object detection in UAV scenarios, offering an improved solution without introducing entirely new theoretical constructs. Future work will focus on lightweight deployment and adaptation to more complex environments.</p>\",\"PeriodicalId\":37035,\"journal\":{\"name\":\"Journal of Imaging\",\"volume\":\"11 8\",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12387663/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Imaging\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/jimaging11080285\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"IMAGING SCIENCE & PHOTOGRAPHIC TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Imaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/jimaging11080285","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"IMAGING SCIENCE & PHOTOGRAPHIC TECHNOLOGY","Score":null,"Total":0}
MSConv-YOLO: An Improved Small Target Detection Algorithm Based on YOLOv8.
Small object detection in UAV aerial imagery presents significant challenges due to scale variations, sparse feature representation, and complex backgrounds. To address these issues, this paper focuses on practical engineering improvements to the existing YOLOv8s framework, rather than proposing a fundamentally new algorithm. We introduce MultiScaleConv-YOLO (MSConv-YOLO), an enhanced model that integrates well-established techniques to improve detection performance for small targets. Specifically, the proposed approach introduces three key improvements: (1) a MultiScaleConv (MSConv) module that combines depthwise separable and dilated convolutions with varying dilation rates, enhancing multi-scale feature extraction while maintaining efficiency; (2) the replacement of CIoU with WIoU v3 as the bounding box regression loss, which incorporates a dynamic non-monotonic focusing mechanism to improve localization for small targets; and (3) the addition of a high-resolution detection head in the neck-head structure, leveraging FPN and PAN to preserve fine-grained features and ensure full-scale coverage. Experimental results on the VisDrone2019 dataset show that MSConv-YOLO outperforms the baseline YOLOv8s by achieving a 6.9% improvement in mAP@0.5 and a 6.3% gain in recall. Ablation studies further validate the complementary impact of each enhancement. This paper presents practical and effective engineering enhancements to small object detection in UAV scenarios, offering an improved solution without introducing entirely new theoretical constructs. Future work will focus on lightweight deployment and adaptation to more complex environments.