Roman Ishchenko, Maksim Solopov, Andrey Popandopulo, Elizaveta Chechekhina, Viktor Turchin, Fedor Popivnenko, Aleksandr Ermak, Konstantyn Ladyk, Anton Konyashin, Kirill Golubitskiy, Aleksei Burtsev, Dmitry Filimonov
{"title":"基于有限数据集的手术缝线质量分类迁移学习效果评价。","authors":"Roman Ishchenko, Maksim Solopov, Andrey Popandopulo, Elizaveta Chechekhina, Viktor Turchin, Fedor Popivnenko, Aleksandr Ermak, Konstantyn Ladyk, Anton Konyashin, Kirill Golubitskiy, Aleksei Burtsev, Dmitry Filimonov","doi":"10.3390/jimaging11080266","DOIUrl":null,"url":null,"abstract":"<p><p>This study evaluates the effectiveness of transfer learning with pre-trained convolutional neural networks (CNNs) for the automated binary classification of surgical suture quality (high-quality/low-quality) using photographs of three suture types: interrupted open vascular sutures (IOVS), continuous over-and-over open sutures (COOS), and interrupted laparoscopic sutures (ILS). To address the challenge of limited medical data, eight state-of-the-art CNN architectures-EfficientNetB0, ResNet50V2, MobileNetV3Large, VGG16, VGG19, InceptionV3, Xception, and DenseNet121-were trained and validated on small datasets (100-190 images per type) using 5-fold cross-validation. Performance was assessed using the F1-score, AUC-ROC, and a custom weighted stability-aware score (Score<sub>adj</sub>). The results demonstrate that transfer learning achieves robust classification (F1 > 0.90 for IOVS/ILS, 0.79 for COOS) despite data scarcity. ResNet50V2, DenseNet121, and Xception were more stable by Score<sub>adj</sub>, with ResNet50V2 achieving the highest AUC-ROC (0.959 ± 0.008) for IOVS internal view classification. GradCAM visualizations confirmed model focus on clinically relevant features (e.g., stitch uniformity, tissue apposition). These findings validate transfer learning as a powerful approach for developing objective, automated surgical skill assessment tools, reducing reliance on subjective expert evaluations while maintaining accuracy in resource-constrained settings.</p>","PeriodicalId":37035,"journal":{"name":"Journal of Imaging","volume":"11 8","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12387153/pdf/","citationCount":"0","resultStr":"{\"title\":\"Evaluation of Transfer Learning Efficacy for Surgical Suture Quality Classification on Limited Datasets.\",\"authors\":\"Roman Ishchenko, Maksim Solopov, Andrey Popandopulo, Elizaveta Chechekhina, Viktor Turchin, Fedor Popivnenko, Aleksandr Ermak, Konstantyn Ladyk, Anton Konyashin, Kirill Golubitskiy, Aleksei Burtsev, Dmitry Filimonov\",\"doi\":\"10.3390/jimaging11080266\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study evaluates the effectiveness of transfer learning with pre-trained convolutional neural networks (CNNs) for the automated binary classification of surgical suture quality (high-quality/low-quality) using photographs of three suture types: interrupted open vascular sutures (IOVS), continuous over-and-over open sutures (COOS), and interrupted laparoscopic sutures (ILS). To address the challenge of limited medical data, eight state-of-the-art CNN architectures-EfficientNetB0, ResNet50V2, MobileNetV3Large, VGG16, VGG19, InceptionV3, Xception, and DenseNet121-were trained and validated on small datasets (100-190 images per type) using 5-fold cross-validation. Performance was assessed using the F1-score, AUC-ROC, and a custom weighted stability-aware score (Score<sub>adj</sub>). The results demonstrate that transfer learning achieves robust classification (F1 > 0.90 for IOVS/ILS, 0.79 for COOS) despite data scarcity. ResNet50V2, DenseNet121, and Xception were more stable by Score<sub>adj</sub>, with ResNet50V2 achieving the highest AUC-ROC (0.959 ± 0.008) for IOVS internal view classification. GradCAM visualizations confirmed model focus on clinically relevant features (e.g., stitch uniformity, tissue apposition). These findings validate transfer learning as a powerful approach for developing objective, automated surgical skill assessment tools, reducing reliance on subjective expert evaluations while maintaining accuracy in resource-constrained settings.</p>\",\"PeriodicalId\":37035,\"journal\":{\"name\":\"Journal of Imaging\",\"volume\":\"11 8\",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12387153/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Imaging\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/jimaging11080266\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"IMAGING SCIENCE & PHOTOGRAPHIC TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Imaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/jimaging11080266","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"IMAGING SCIENCE & PHOTOGRAPHIC TECHNOLOGY","Score":null,"Total":0}
Evaluation of Transfer Learning Efficacy for Surgical Suture Quality Classification on Limited Datasets.
This study evaluates the effectiveness of transfer learning with pre-trained convolutional neural networks (CNNs) for the automated binary classification of surgical suture quality (high-quality/low-quality) using photographs of three suture types: interrupted open vascular sutures (IOVS), continuous over-and-over open sutures (COOS), and interrupted laparoscopic sutures (ILS). To address the challenge of limited medical data, eight state-of-the-art CNN architectures-EfficientNetB0, ResNet50V2, MobileNetV3Large, VGG16, VGG19, InceptionV3, Xception, and DenseNet121-were trained and validated on small datasets (100-190 images per type) using 5-fold cross-validation. Performance was assessed using the F1-score, AUC-ROC, and a custom weighted stability-aware score (Scoreadj). The results demonstrate that transfer learning achieves robust classification (F1 > 0.90 for IOVS/ILS, 0.79 for COOS) despite data scarcity. ResNet50V2, DenseNet121, and Xception were more stable by Scoreadj, with ResNet50V2 achieving the highest AUC-ROC (0.959 ± 0.008) for IOVS internal view classification. GradCAM visualizations confirmed model focus on clinically relevant features (e.g., stitch uniformity, tissue apposition). These findings validate transfer learning as a powerful approach for developing objective, automated surgical skill assessment tools, reducing reliance on subjective expert evaluations while maintaining accuracy in resource-constrained settings.