{"title":"前列腺癌分析和检测的深度学习技术:现状调查。","authors":"Olushola Olawuyi, Serestina Viriri","doi":"10.3390/jimaging11080254","DOIUrl":null,"url":null,"abstract":"<p><p>The human interpretation of medical images, especially for the detection of cancer in the prostate, has traditionally been a time-consuming and challenging process. Manual examination for the detection of prostate cancer is not only time-consuming but also prone to errors, carrying the risk of an excess biopsy due to the inherent limitations of human visual interpretation. With the technical advancements and rapid growth of computer resources, machine learning (ML) and deep learning (DL) models have been experimentally used for medical image analysis, particularly in lesion detection. However, several state-of-the-art models have shown promising results. There are still challenges when analysing prostate lesion images due to the distinctive and complex nature of medical images. This study offers an elaborate review of the techniques that are used to diagnose prostate cancer using medical images. The goal is to provide a comprehensive and valuable resource that helps researchers develop accurate and autonomous models for effectively detecting prostate cancer. This paper is structured as follows: First, we outline the issues with prostate lesion detection. We then review the methods for analysing prostate lesion images and classification approaches. We then examine convolutional neural network (CNN) architectures and explore their applications in deep learning (DL) for image-based prostate cancer diagnosis. Finally, we provide an overview of prostate cancer datasets and evaluation metrics in deep learning. In conclusion, this review analyses key findings, highlights the challenges in prostate lesion detection, and evaluates the effectiveness and limitations of current deep learning techniques.</p>","PeriodicalId":37035,"journal":{"name":"Journal of Imaging","volume":"11 8","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12387416/pdf/","citationCount":"0","resultStr":"{\"title\":\"Deep Learning Techniques for Prostate Cancer Analysis and Detection: Survey of the State of the Art.\",\"authors\":\"Olushola Olawuyi, Serestina Viriri\",\"doi\":\"10.3390/jimaging11080254\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The human interpretation of medical images, especially for the detection of cancer in the prostate, has traditionally been a time-consuming and challenging process. Manual examination for the detection of prostate cancer is not only time-consuming but also prone to errors, carrying the risk of an excess biopsy due to the inherent limitations of human visual interpretation. With the technical advancements and rapid growth of computer resources, machine learning (ML) and deep learning (DL) models have been experimentally used for medical image analysis, particularly in lesion detection. However, several state-of-the-art models have shown promising results. There are still challenges when analysing prostate lesion images due to the distinctive and complex nature of medical images. This study offers an elaborate review of the techniques that are used to diagnose prostate cancer using medical images. The goal is to provide a comprehensive and valuable resource that helps researchers develop accurate and autonomous models for effectively detecting prostate cancer. This paper is structured as follows: First, we outline the issues with prostate lesion detection. We then review the methods for analysing prostate lesion images and classification approaches. We then examine convolutional neural network (CNN) architectures and explore their applications in deep learning (DL) for image-based prostate cancer diagnosis. Finally, we provide an overview of prostate cancer datasets and evaluation metrics in deep learning. In conclusion, this review analyses key findings, highlights the challenges in prostate lesion detection, and evaluates the effectiveness and limitations of current deep learning techniques.</p>\",\"PeriodicalId\":37035,\"journal\":{\"name\":\"Journal of Imaging\",\"volume\":\"11 8\",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-07-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12387416/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Imaging\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/jimaging11080254\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"IMAGING SCIENCE & PHOTOGRAPHIC TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Imaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/jimaging11080254","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"IMAGING SCIENCE & PHOTOGRAPHIC TECHNOLOGY","Score":null,"Total":0}
Deep Learning Techniques for Prostate Cancer Analysis and Detection: Survey of the State of the Art.
The human interpretation of medical images, especially for the detection of cancer in the prostate, has traditionally been a time-consuming and challenging process. Manual examination for the detection of prostate cancer is not only time-consuming but also prone to errors, carrying the risk of an excess biopsy due to the inherent limitations of human visual interpretation. With the technical advancements and rapid growth of computer resources, machine learning (ML) and deep learning (DL) models have been experimentally used for medical image analysis, particularly in lesion detection. However, several state-of-the-art models have shown promising results. There are still challenges when analysing prostate lesion images due to the distinctive and complex nature of medical images. This study offers an elaborate review of the techniques that are used to diagnose prostate cancer using medical images. The goal is to provide a comprehensive and valuable resource that helps researchers develop accurate and autonomous models for effectively detecting prostate cancer. This paper is structured as follows: First, we outline the issues with prostate lesion detection. We then review the methods for analysing prostate lesion images and classification approaches. We then examine convolutional neural network (CNN) architectures and explore their applications in deep learning (DL) for image-based prostate cancer diagnosis. Finally, we provide an overview of prostate cancer datasets and evaluation metrics in deep learning. In conclusion, this review analyses key findings, highlights the challenges in prostate lesion detection, and evaluates the effectiveness and limitations of current deep learning techniques.