{"title":"基于边界特征增强和非对称大视场上下文特征的道路标线损伤程度检测。","authors":"Zheng Wang, Ryojun Ikeura, Soichiro Hayakawa, Zhiliang Zhang","doi":"10.3390/jimaging11080259","DOIUrl":null,"url":null,"abstract":"<p><p>Road markings, as critical components of transportation infrastructure, are crucial for ensuring traffic safety. Accurate quantification of their damage severity is vital for effective maintenance prioritization. However, existing methods are limited to detecting the presence of damage without assessing its extent. To address this limitation, we propose a novel segmentation-based framework for estimating the degree of road marking damage. The method comprises two stages: segmentation of residual pixels from the damaged markings and segmentation of the intact markings region. This dual-segmentation strategy enables precise reconstruction and comparison for severity estimation. To enhance segmentation performance, we proposed two key modules: the Asymmetric Large Field-of-View Contextual (ALFVC) module, which captures rich multi-scale contextual features, and the supervised Boundary Feature Enhancement (BFE) module, which strengthens shape representation and boundary accuracy. The experimental results demonstrate that our method achieved an average segmentation accuracy of 89.44%, outperforming the baseline by 5.86 percentage points. Moreover, the damage quantification achieved a minimum error rate of just 0.22% on the proprietary dataset. The proposed approach was both effective and lightweight, providing valuable support for automated maintenance planning, and significantly improving the efficiency and precision of road marking management.</p>","PeriodicalId":37035,"journal":{"name":"Journal of Imaging","volume":"11 8","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12387804/pdf/","citationCount":"0","resultStr":"{\"title\":\"Road Marking Damage Degree Detection Based on Boundary Features Enhanced and Asymmetric Large Field-of-View Contextual Features.\",\"authors\":\"Zheng Wang, Ryojun Ikeura, Soichiro Hayakawa, Zhiliang Zhang\",\"doi\":\"10.3390/jimaging11080259\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Road markings, as critical components of transportation infrastructure, are crucial for ensuring traffic safety. Accurate quantification of their damage severity is vital for effective maintenance prioritization. However, existing methods are limited to detecting the presence of damage without assessing its extent. To address this limitation, we propose a novel segmentation-based framework for estimating the degree of road marking damage. The method comprises two stages: segmentation of residual pixels from the damaged markings and segmentation of the intact markings region. This dual-segmentation strategy enables precise reconstruction and comparison for severity estimation. To enhance segmentation performance, we proposed two key modules: the Asymmetric Large Field-of-View Contextual (ALFVC) module, which captures rich multi-scale contextual features, and the supervised Boundary Feature Enhancement (BFE) module, which strengthens shape representation and boundary accuracy. The experimental results demonstrate that our method achieved an average segmentation accuracy of 89.44%, outperforming the baseline by 5.86 percentage points. Moreover, the damage quantification achieved a minimum error rate of just 0.22% on the proprietary dataset. The proposed approach was both effective and lightweight, providing valuable support for automated maintenance planning, and significantly improving the efficiency and precision of road marking management.</p>\",\"PeriodicalId\":37035,\"journal\":{\"name\":\"Journal of Imaging\",\"volume\":\"11 8\",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-08-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12387804/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Imaging\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/jimaging11080259\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"IMAGING SCIENCE & PHOTOGRAPHIC TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Imaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/jimaging11080259","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"IMAGING SCIENCE & PHOTOGRAPHIC TECHNOLOGY","Score":null,"Total":0}
Road Marking Damage Degree Detection Based on Boundary Features Enhanced and Asymmetric Large Field-of-View Contextual Features.
Road markings, as critical components of transportation infrastructure, are crucial for ensuring traffic safety. Accurate quantification of their damage severity is vital for effective maintenance prioritization. However, existing methods are limited to detecting the presence of damage without assessing its extent. To address this limitation, we propose a novel segmentation-based framework for estimating the degree of road marking damage. The method comprises two stages: segmentation of residual pixels from the damaged markings and segmentation of the intact markings region. This dual-segmentation strategy enables precise reconstruction and comparison for severity estimation. To enhance segmentation performance, we proposed two key modules: the Asymmetric Large Field-of-View Contextual (ALFVC) module, which captures rich multi-scale contextual features, and the supervised Boundary Feature Enhancement (BFE) module, which strengthens shape representation and boundary accuracy. The experimental results demonstrate that our method achieved an average segmentation accuracy of 89.44%, outperforming the baseline by 5.86 percentage points. Moreover, the damage quantification achieved a minimum error rate of just 0.22% on the proprietary dataset. The proposed approach was both effective and lightweight, providing valuable support for automated maintenance planning, and significantly improving the efficiency and precision of road marking management.