基于增强墨西哥帽小波变换和改进Zernike矩的Placido亚像素边缘检测算法。

IF 2.7 Q3 IMAGING SCIENCE & PHOTOGRAPHIC TECHNOLOGY
Yujie Wang, Jinyu Liang, Yating Xiao, Xinfeng Liu, Jiale Li, Guangyu Cui, Quan Zhang
{"title":"基于增强墨西哥帽小波变换和改进Zernike矩的Placido亚像素边缘检测算法。","authors":"Yujie Wang, Jinyu Liang, Yating Xiao, Xinfeng Liu, Jiale Li, Guangyu Cui, Quan Zhang","doi":"10.3390/jimaging11080267","DOIUrl":null,"url":null,"abstract":"<p><p>In order to meet the high-precision location requirements of the corneal Placido ring edge in corneal topographic reconstruction, this paper proposes a sub-pixel edge detection algorithm based on multi-scale and multi-position enhanced Mexican Hat Wavelet Transform and improved Zernike moment. Firstly, the image undergoes preliminary processing using a multi-scale and multi-position enhanced Mexican Hat Wavelet Transform function. Subsequently, the preliminary edge information extracted is relocated based on the Zernike moments of a 9 × 9 template. Finally, two improved adaptive edge threshold algorithms are employed to determine the actual sub-pixel edge points of the image, thereby realizing sub-pixel edge detection for corneal Placido ring images. Through comparison and analysis of edge extraction results from real human eye images obtained using the algorithm proposed in this paper and those from other existing algorithms, it is observed that the average sub-pixel edge error of other algorithms is 0.286 pixels, whereas the proposed algorithm achieves an average error of only 0.094 pixels. Furthermore, the proposed algorithm demonstrates strong robustness against noise.</p>","PeriodicalId":37035,"journal":{"name":"Journal of Imaging","volume":"11 8","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12387409/pdf/","citationCount":"0","resultStr":"{\"title\":\"Placido Sub-Pixel Edge Detection Algorithm Based on Enhanced Mexican Hat Wavelet Transform and Improved Zernike Moments.\",\"authors\":\"Yujie Wang, Jinyu Liang, Yating Xiao, Xinfeng Liu, Jiale Li, Guangyu Cui, Quan Zhang\",\"doi\":\"10.3390/jimaging11080267\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In order to meet the high-precision location requirements of the corneal Placido ring edge in corneal topographic reconstruction, this paper proposes a sub-pixel edge detection algorithm based on multi-scale and multi-position enhanced Mexican Hat Wavelet Transform and improved Zernike moment. Firstly, the image undergoes preliminary processing using a multi-scale and multi-position enhanced Mexican Hat Wavelet Transform function. Subsequently, the preliminary edge information extracted is relocated based on the Zernike moments of a 9 × 9 template. Finally, two improved adaptive edge threshold algorithms are employed to determine the actual sub-pixel edge points of the image, thereby realizing sub-pixel edge detection for corneal Placido ring images. Through comparison and analysis of edge extraction results from real human eye images obtained using the algorithm proposed in this paper and those from other existing algorithms, it is observed that the average sub-pixel edge error of other algorithms is 0.286 pixels, whereas the proposed algorithm achieves an average error of only 0.094 pixels. Furthermore, the proposed algorithm demonstrates strong robustness against noise.</p>\",\"PeriodicalId\":37035,\"journal\":{\"name\":\"Journal of Imaging\",\"volume\":\"11 8\",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-08-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12387409/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Imaging\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/jimaging11080267\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"IMAGING SCIENCE & PHOTOGRAPHIC TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Imaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/jimaging11080267","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"IMAGING SCIENCE & PHOTOGRAPHIC TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

为了满足角膜地形重建中对角膜Placido环边缘的高精度定位要求,本文提出了一种基于多尺度多位置增强墨西哥帽小波变换和改进泽尼克矩的亚像素边缘检测算法。首先,利用多尺度、多位置增强的墨西哥帽小波变换对图像进行预处理;然后,根据9 × 9模板的泽尼克矩对提取的初步边缘信息进行重新定位。最后,采用两种改进的自适应边缘阈值算法确定图像的实际亚像素边缘点,从而实现角膜Placido环图像的亚像素边缘检测。通过对比分析本文算法与其他现有算法对真实人眼图像的边缘提取结果,发现其他算法的平均亚像素边缘误差为0.286像素,而本文算法的平均亚像素边缘误差仅为0.094像素。此外,该算法对噪声具有较强的鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Placido Sub-Pixel Edge Detection Algorithm Based on Enhanced Mexican Hat Wavelet Transform and Improved Zernike Moments.

In order to meet the high-precision location requirements of the corneal Placido ring edge in corneal topographic reconstruction, this paper proposes a sub-pixel edge detection algorithm based on multi-scale and multi-position enhanced Mexican Hat Wavelet Transform and improved Zernike moment. Firstly, the image undergoes preliminary processing using a multi-scale and multi-position enhanced Mexican Hat Wavelet Transform function. Subsequently, the preliminary edge information extracted is relocated based on the Zernike moments of a 9 × 9 template. Finally, two improved adaptive edge threshold algorithms are employed to determine the actual sub-pixel edge points of the image, thereby realizing sub-pixel edge detection for corneal Placido ring images. Through comparison and analysis of edge extraction results from real human eye images obtained using the algorithm proposed in this paper and those from other existing algorithms, it is observed that the average sub-pixel edge error of other algorithms is 0.286 pixels, whereas the proposed algorithm achieves an average error of only 0.094 pixels. Furthermore, the proposed algorithm demonstrates strong robustness against noise.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Imaging
Journal of Imaging Medicine-Radiology, Nuclear Medicine and Imaging
CiteScore
5.90
自引率
6.20%
发文量
303
审稿时长
7 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信