GPR图像中空洞和严重松动的自动识别方法。

IF 2.7 Q3 IMAGING SCIENCE & PHOTOGRAPHIC TECHNOLOGY
Ze Chai, Zicheng Wang, Zeshan Xu, Ziyu Feng, Yafeng Zhao
{"title":"GPR图像中空洞和严重松动的自动识别方法。","authors":"Ze Chai, Zicheng Wang, Zeshan Xu, Ziyu Feng, Yafeng Zhao","doi":"10.3390/jimaging11080255","DOIUrl":null,"url":null,"abstract":"<p><p>This paper proposes a novel automatic recognition method for distinguishing voids and severe loosening in road structures based on features of ground-penetrating radar (GPR) B-scan images. By analyzing differences in image texture, the intensity and clarity of top reflection interfaces, and the regularity of internal waveforms, a set of discriminative features is constructed. Based on these features, we develop the FKS-GPR dataset, a high-quality, manually annotated GPR dataset collected from real road environments, covering diverse and complex background conditions. Compared to datasets based on simulations, FKS-GPR offers higher practical relevance. An improved ACF-YOLO network is then designed for automatic detection, and the experimental results show that the proposed method achieves superior accuracy and robustness, validating its effectiveness and engineering applicability.</p>","PeriodicalId":37035,"journal":{"name":"Journal of Imaging","volume":"11 8","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12387192/pdf/","citationCount":"0","resultStr":"{\"title\":\"An Automated Method for Identifying Voids and Severe Loosening in GPR Images.\",\"authors\":\"Ze Chai, Zicheng Wang, Zeshan Xu, Ziyu Feng, Yafeng Zhao\",\"doi\":\"10.3390/jimaging11080255\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This paper proposes a novel automatic recognition method for distinguishing voids and severe loosening in road structures based on features of ground-penetrating radar (GPR) B-scan images. By analyzing differences in image texture, the intensity and clarity of top reflection interfaces, and the regularity of internal waveforms, a set of discriminative features is constructed. Based on these features, we develop the FKS-GPR dataset, a high-quality, manually annotated GPR dataset collected from real road environments, covering diverse and complex background conditions. Compared to datasets based on simulations, FKS-GPR offers higher practical relevance. An improved ACF-YOLO network is then designed for automatic detection, and the experimental results show that the proposed method achieves superior accuracy and robustness, validating its effectiveness and engineering applicability.</p>\",\"PeriodicalId\":37035,\"journal\":{\"name\":\"Journal of Imaging\",\"volume\":\"11 8\",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12387192/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Imaging\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/jimaging11080255\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"IMAGING SCIENCE & PHOTOGRAPHIC TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Imaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/jimaging11080255","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"IMAGING SCIENCE & PHOTOGRAPHIC TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种基于探地雷达b扫描图像特征的道路结构空洞和严重松动自动识别方法。通过分析图像纹理、顶部反射界面强度和清晰度的差异以及内部波形的规律性,构建了一组判别特征。基于这些特征,我们开发了FKS-GPR数据集,这是一个从真实道路环境中收集的高质量人工注释的GPR数据集,涵盖了多样化和复杂的背景条件。与基于模拟的数据集相比,FKS-GPR具有更高的实际相关性。设计了一种改进的ACF-YOLO网络进行自动检测,实验结果表明,该方法具有较好的精度和鲁棒性,验证了其有效性和工程适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

An Automated Method for Identifying Voids and Severe Loosening in GPR Images.

An Automated Method for Identifying Voids and Severe Loosening in GPR Images.

An Automated Method for Identifying Voids and Severe Loosening in GPR Images.

An Automated Method for Identifying Voids and Severe Loosening in GPR Images.

This paper proposes a novel automatic recognition method for distinguishing voids and severe loosening in road structures based on features of ground-penetrating radar (GPR) B-scan images. By analyzing differences in image texture, the intensity and clarity of top reflection interfaces, and the regularity of internal waveforms, a set of discriminative features is constructed. Based on these features, we develop the FKS-GPR dataset, a high-quality, manually annotated GPR dataset collected from real road environments, covering diverse and complex background conditions. Compared to datasets based on simulations, FKS-GPR offers higher practical relevance. An improved ACF-YOLO network is then designed for automatic detection, and the experimental results show that the proposed method achieves superior accuracy and robustness, validating its effectiveness and engineering applicability.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Imaging
Journal of Imaging Medicine-Radiology, Nuclear Medicine and Imaging
CiteScore
5.90
自引率
6.20%
发文量
303
审稿时长
7 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信