Yanjing Luo, Mohammadtaha Kouchakinezhad, Felix Repp, Verena Scheper, Thomas Lenarz, Farnaz Matin-Mann
下载PDF
{"title":"系统和个体化外耳道植入物制备:高效和准确的自动分割系统的开发和验证。","authors":"Yanjing Luo, Mohammadtaha Kouchakinezhad, Felix Repp, Verena Scheper, Thomas Lenarz, Farnaz Matin-Mann","doi":"10.3390/jimaging11080264","DOIUrl":null,"url":null,"abstract":"<p><p>External ear canal (EEC) stenosis, often associated with cholesteatoma, carries a high risk of postoperative restenosis despite surgical intervention. While individualized implants offer promise in preventing restenosis, the high morphological variability of EECs and the lack of standardized definitions hinder systematic implant design. This study aimed to characterize individual EEC morphology and to develop a validated automated segmentation system for efficient implant preparation. Reference datasets were first generated by manual segmentation using 3D Slicer<sup>TM</sup> software version 5.2.2. Based on these, we developed a customized plugin capable of automatically identifying the maximal implantable region within the EEC and measuring its key dimensions. The accuracy of the plugin was assessed by comparing it with manual segmentation results in terms of shape, volume, length, and width. Validation was further performed using three temporal bone implantation experiments with 3D-Bioplotter©-fabricated EEC implants. The automated system demonstrated strong consistency with manual methods and significantly improved segmentation efficiency. The plugin-generated models enabled successful implant fabrication and placement in all validation tests. These results confirm the system's clinical feasibility and support its use for individualized and systematic EEC implant design. The developed tool holds potential to improve surgical planning and reduce postoperative restenosis in EEC stenosis treatment.</p>","PeriodicalId":37035,"journal":{"name":"Journal of Imaging","volume":"11 8","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12387852/pdf/","citationCount":"0","resultStr":"{\"title\":\"Systematic and Individualized Preparation of External Ear Canal Implants: Development and Validation of an Efficient and Accurate Automated Segmentation System.\",\"authors\":\"Yanjing Luo, Mohammadtaha Kouchakinezhad, Felix Repp, Verena Scheper, Thomas Lenarz, Farnaz Matin-Mann\",\"doi\":\"10.3390/jimaging11080264\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>External ear canal (EEC) stenosis, often associated with cholesteatoma, carries a high risk of postoperative restenosis despite surgical intervention. While individualized implants offer promise in preventing restenosis, the high morphological variability of EECs and the lack of standardized definitions hinder systematic implant design. This study aimed to characterize individual EEC morphology and to develop a validated automated segmentation system for efficient implant preparation. Reference datasets were first generated by manual segmentation using 3D Slicer<sup>TM</sup> software version 5.2.2. Based on these, we developed a customized plugin capable of automatically identifying the maximal implantable region within the EEC and measuring its key dimensions. The accuracy of the plugin was assessed by comparing it with manual segmentation results in terms of shape, volume, length, and width. Validation was further performed using three temporal bone implantation experiments with 3D-Bioplotter©-fabricated EEC implants. The automated system demonstrated strong consistency with manual methods and significantly improved segmentation efficiency. The plugin-generated models enabled successful implant fabrication and placement in all validation tests. These results confirm the system's clinical feasibility and support its use for individualized and systematic EEC implant design. The developed tool holds potential to improve surgical planning and reduce postoperative restenosis in EEC stenosis treatment.</p>\",\"PeriodicalId\":37035,\"journal\":{\"name\":\"Journal of Imaging\",\"volume\":\"11 8\",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12387852/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Imaging\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/jimaging11080264\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"IMAGING SCIENCE & PHOTOGRAPHIC TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Imaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/jimaging11080264","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"IMAGING SCIENCE & PHOTOGRAPHIC TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
引用
批量引用