人工智能难产算法(AIDA)对Robson分类组剖宫产术的贡献。

IF 2.7 Q3 IMAGING SCIENCE & PHOTOGRAPHIC TECHNOLOGY
Antonio Malvasi, Lorenzo E Malgieri, Michael Stark, Edoardo Di Naro, Dan Farine, Giorgio Maria Baldini, Miriam Dellino, Murat Yassa, Andrea Tinelli, Antonella Vimercati, Tommaso Difonzo
{"title":"人工智能难产算法(AIDA)对Robson分类组剖宫产术的贡献。","authors":"Antonio Malvasi, Lorenzo E Malgieri, Michael Stark, Edoardo Di Naro, Dan Farine, Giorgio Maria Baldini, Miriam Dellino, Murat Yassa, Andrea Tinelli, Antonella Vimercati, Tommaso Difonzo","doi":"10.3390/jimaging11080276","DOIUrl":null,"url":null,"abstract":"<p><p>Global cesarean section (CS) rates continue to rise, with the Robson classification widely used for analysis. However, Robson Group 2A patients (nulliparous women with induced labor) show disproportionately high CS rates that cannot be fully explained by demographic factors alone. This study explored how the Artificial Intelligence Dystocia Algorithm (AIDA) could enhance the Robson system by providing detailed information on geometric dystocia, thereby facilitating better understanding of factors contributing to CS and developing more targeted reduction strategies. The authors conducted a comprehensive literature review analyzing both classification systems across multiple databases and developed a theoretical framework for integration. AIDA categorized labor cases into five classes (0-4) by analyzing four key geometric parameters measured through intrapartum ultrasound: angle of progression (AoP), asynclitism degree (AD), head-symphysis distance (HSD), and midline angle (MLA). Significant asynclitism (AD ≥ 7.0 mm) was strongly associated with CS regardless of other parameters, potentially explaining many \"failure to progress\" cases in Robson Group 2A patients. The proposed integration created a combined classification providing both population-level and individual geometric risk assessment. The integration of AIDA with the Robson classification represented a potentially valuable advancement in CS risk assessment, combining population-level stratification with individual-level geometric assessment to enable more personalized obstetric care. Future validation studies across diverse settings are needed to establish clinical utility.</p>","PeriodicalId":37035,"journal":{"name":"Journal of Imaging","volume":"11 8","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12387988/pdf/","citationCount":"0","resultStr":"{\"title\":\"The Contribution of AIDA (Artificial Intelligence Dystocia Algorithm) to Cesarean Section Within Robson Classification Group.\",\"authors\":\"Antonio Malvasi, Lorenzo E Malgieri, Michael Stark, Edoardo Di Naro, Dan Farine, Giorgio Maria Baldini, Miriam Dellino, Murat Yassa, Andrea Tinelli, Antonella Vimercati, Tommaso Difonzo\",\"doi\":\"10.3390/jimaging11080276\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Global cesarean section (CS) rates continue to rise, with the Robson classification widely used for analysis. However, Robson Group 2A patients (nulliparous women with induced labor) show disproportionately high CS rates that cannot be fully explained by demographic factors alone. This study explored how the Artificial Intelligence Dystocia Algorithm (AIDA) could enhance the Robson system by providing detailed information on geometric dystocia, thereby facilitating better understanding of factors contributing to CS and developing more targeted reduction strategies. The authors conducted a comprehensive literature review analyzing both classification systems across multiple databases and developed a theoretical framework for integration. AIDA categorized labor cases into five classes (0-4) by analyzing four key geometric parameters measured through intrapartum ultrasound: angle of progression (AoP), asynclitism degree (AD), head-symphysis distance (HSD), and midline angle (MLA). Significant asynclitism (AD ≥ 7.0 mm) was strongly associated with CS regardless of other parameters, potentially explaining many \\\"failure to progress\\\" cases in Robson Group 2A patients. The proposed integration created a combined classification providing both population-level and individual geometric risk assessment. The integration of AIDA with the Robson classification represented a potentially valuable advancement in CS risk assessment, combining population-level stratification with individual-level geometric assessment to enable more personalized obstetric care. Future validation studies across diverse settings are needed to establish clinical utility.</p>\",\"PeriodicalId\":37035,\"journal\":{\"name\":\"Journal of Imaging\",\"volume\":\"11 8\",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-08-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12387988/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Imaging\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/jimaging11080276\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"IMAGING SCIENCE & PHOTOGRAPHIC TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Imaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/jimaging11080276","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"IMAGING SCIENCE & PHOTOGRAPHIC TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

全球剖宫产率持续上升,罗布森分类被广泛用于分析。然而,Robson 2A组患者(无产妇女引产)显示不成比例的高CS率,不能完全由人口因素单独解释。本研究探讨了人工智能难产算法(AIDA)如何通过提供几何难产的详细信息来增强Robson系统,从而有助于更好地理解导致CS的因素,并制定更有针对性的减少策略。作者进行了全面的文献综述,分析了跨多个数据库的两种分类系统,并开发了一个整合的理论框架。AIDA通过分析产时超声测量到的四个关键几何参数:进展角(AoP)、非同步度(AD)、头联合距离(HSD)和中线角(MLA),将分娩病例分为5类(0-4级)。无论其他参数如何,显著无关系(AD≥7.0 mm)与CS密切相关,这可能解释了Robson 2A组患者中许多“进展失败”的病例。提出的整合创建了一个组合分类,提供了群体水平和个人几何风险评估。AIDA与Robson分类的整合代表了CS风险评估的潜在有价值的进步,将人口水平分层与个人水平几何评估相结合,以实现更个性化的产科护理。未来需要在不同环境下进行验证研究,以确定临床实用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

The Contribution of AIDA (Artificial Intelligence Dystocia Algorithm) to Cesarean Section Within Robson Classification Group.

The Contribution of AIDA (Artificial Intelligence Dystocia Algorithm) to Cesarean Section Within Robson Classification Group.

The Contribution of AIDA (Artificial Intelligence Dystocia Algorithm) to Cesarean Section Within Robson Classification Group.

Global cesarean section (CS) rates continue to rise, with the Robson classification widely used for analysis. However, Robson Group 2A patients (nulliparous women with induced labor) show disproportionately high CS rates that cannot be fully explained by demographic factors alone. This study explored how the Artificial Intelligence Dystocia Algorithm (AIDA) could enhance the Robson system by providing detailed information on geometric dystocia, thereby facilitating better understanding of factors contributing to CS and developing more targeted reduction strategies. The authors conducted a comprehensive literature review analyzing both classification systems across multiple databases and developed a theoretical framework for integration. AIDA categorized labor cases into five classes (0-4) by analyzing four key geometric parameters measured through intrapartum ultrasound: angle of progression (AoP), asynclitism degree (AD), head-symphysis distance (HSD), and midline angle (MLA). Significant asynclitism (AD ≥ 7.0 mm) was strongly associated with CS regardless of other parameters, potentially explaining many "failure to progress" cases in Robson Group 2A patients. The proposed integration created a combined classification providing both population-level and individual geometric risk assessment. The integration of AIDA with the Robson classification represented a potentially valuable advancement in CS risk assessment, combining population-level stratification with individual-level geometric assessment to enable more personalized obstetric care. Future validation studies across diverse settings are needed to establish clinical utility.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Imaging
Journal of Imaging Medicine-Radiology, Nuclear Medicine and Imaging
CiteScore
5.90
自引率
6.20%
发文量
303
审稿时长
7 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信