医疗保健决策支持系统中癫痫发作检测的混合元启发式框架。

IF 1.2 Q4 CLINICAL NEUROLOGY
Indu Dokare, Sudha Gupta
{"title":"医疗保健决策支持系统中癫痫发作检测的混合元启发式框架。","authors":"Indu Dokare, Sudha Gupta","doi":"10.1186/s42494-025-00238-y","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The detection of epileptic seizures is a crucial aspect of epilepsy care, requiring precision and reliability for effective diagnosis and treatment. Seizure detection plays a critical role in healthcare informatics, aiding in the timely diagnosis and management of epilepsy. The use of computational intelligence and optimization techniques has shown significant promise in improving the performance of automated seizure detection systems.</p><p><strong>Methods: </strong>This research work proposes a novel hybrid approach that combines Ant Colony Optimization (ACO) for feature selection with Gray Wolf Optimization (GWO) to optimize the hyperparameters of a Random Forest (RF) classifier. In this patient-specific seizure detection, ACO effectively reduces the feature set, improving computational efficiency, while GWO ensures optimal RF performance. The method is evaluated on the Children's Hospital Boston-Massachusetts Institute of Technology (CHB-MIT) and Seina datasets, which include multichannel EEG data from epileptic patients. Performance metrics such as accuracy, sensitivity, and specificity are employed to evaluate the effectiveness of the seizure detection system.</p><p><strong>Results: </strong>The proposed ACO-GWO-RF pipeline demonstrated excellent performance on the CHB-MIT dataset, with a mean accuracy of 96.70%, mean sensitivity of 92.66%, and mean specificity of 99.24%, outperforming existing approaches. The mean values of accuracy, sensitivity, and specificity obtained using the Seina dataset are 93.01%, 89.82%, and 96.26%, respectively. These improvements highlight the robustness of the hybrid metaheuristic method in handling complex EEG data.</p><p><strong>Conclusions: </strong>The hybrid metaheuristic approach effectively optimizes the processing and classification of EEG data for seizure detection. Its strong performance across datasets suggests potential for integration into interactive health applications. Furthermore, its patient-specific adaptability makes it a promising tool for personalized epilepsy diagnosis, treatment, and long-term management.</p>","PeriodicalId":33628,"journal":{"name":"Acta Epileptologica","volume":"7 1","pages":"42"},"PeriodicalIF":1.2000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12400604/pdf/","citationCount":"0","resultStr":"{\"title\":\"A hybrid metaheuristic framework for epileptic seizure detection in healthcare decision support systems.\",\"authors\":\"Indu Dokare, Sudha Gupta\",\"doi\":\"10.1186/s42494-025-00238-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>The detection of epileptic seizures is a crucial aspect of epilepsy care, requiring precision and reliability for effective diagnosis and treatment. Seizure detection plays a critical role in healthcare informatics, aiding in the timely diagnosis and management of epilepsy. The use of computational intelligence and optimization techniques has shown significant promise in improving the performance of automated seizure detection systems.</p><p><strong>Methods: </strong>This research work proposes a novel hybrid approach that combines Ant Colony Optimization (ACO) for feature selection with Gray Wolf Optimization (GWO) to optimize the hyperparameters of a Random Forest (RF) classifier. In this patient-specific seizure detection, ACO effectively reduces the feature set, improving computational efficiency, while GWO ensures optimal RF performance. The method is evaluated on the Children's Hospital Boston-Massachusetts Institute of Technology (CHB-MIT) and Seina datasets, which include multichannel EEG data from epileptic patients. Performance metrics such as accuracy, sensitivity, and specificity are employed to evaluate the effectiveness of the seizure detection system.</p><p><strong>Results: </strong>The proposed ACO-GWO-RF pipeline demonstrated excellent performance on the CHB-MIT dataset, with a mean accuracy of 96.70%, mean sensitivity of 92.66%, and mean specificity of 99.24%, outperforming existing approaches. The mean values of accuracy, sensitivity, and specificity obtained using the Seina dataset are 93.01%, 89.82%, and 96.26%, respectively. These improvements highlight the robustness of the hybrid metaheuristic method in handling complex EEG data.</p><p><strong>Conclusions: </strong>The hybrid metaheuristic approach effectively optimizes the processing and classification of EEG data for seizure detection. Its strong performance across datasets suggests potential for integration into interactive health applications. Furthermore, its patient-specific adaptability makes it a promising tool for personalized epilepsy diagnosis, treatment, and long-term management.</p>\",\"PeriodicalId\":33628,\"journal\":{\"name\":\"Acta Epileptologica\",\"volume\":\"7 1\",\"pages\":\"42\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12400604/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Epileptologica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/s42494-025-00238-y\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CLINICAL NEUROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Epileptologica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s42494-025-00238-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0

摘要

背景:癫痫发作的检测是癫痫护理的一个重要方面,需要精确和可靠的有效诊断和治疗。癫痫检测在医疗保健信息学中起着至关重要的作用,有助于癫痫的及时诊断和管理。计算智能和优化技术的使用在提高自动缉获检测系统的性能方面显示出显著的前景。方法:本研究提出了一种新的混合方法,将蚁群优化(ACO)与灰狼优化(GWO)相结合,对随机森林(RF)分类器的超参数进行优化。在这种针对特定患者的癫痫发作检测中,蚁群算法有效地减少了特征集,提高了计算效率,而GWO算法则确保了最佳的射频性能。该方法在波士顿-麻省理工学院儿童医院(CHB-MIT)和Seina数据集上进行了评估,其中包括来自癫痫患者的多通道脑电图数据。性能指标,如准确性,灵敏度和特异性被用来评估癫痫检测系统的有效性。结果:本文提出的ACO-GWO-RF管道在CHB-MIT数据集上表现优异,平均准确率为96.70%,平均灵敏度为92.66%,平均特异性为99.24%,优于现有方法。使用Seina数据集获得的准确率、灵敏度和特异性的平均值分别为93.01%、89.82%和96.26%。这些改进突出了混合元启发式方法在处理复杂脑电数据方面的鲁棒性。结论:混合元启发式方法可有效优化脑电图数据的处理和分类,用于癫痫发作检测。它跨数据集的强大性能表明,有可能集成到交互式健康应用程序中。此外,它的患者特异性适应性使其成为个性化癫痫诊断、治疗和长期管理的有希望的工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A hybrid metaheuristic framework for epileptic seizure detection in healthcare decision support systems.

Background: The detection of epileptic seizures is a crucial aspect of epilepsy care, requiring precision and reliability for effective diagnosis and treatment. Seizure detection plays a critical role in healthcare informatics, aiding in the timely diagnosis and management of epilepsy. The use of computational intelligence and optimization techniques has shown significant promise in improving the performance of automated seizure detection systems.

Methods: This research work proposes a novel hybrid approach that combines Ant Colony Optimization (ACO) for feature selection with Gray Wolf Optimization (GWO) to optimize the hyperparameters of a Random Forest (RF) classifier. In this patient-specific seizure detection, ACO effectively reduces the feature set, improving computational efficiency, while GWO ensures optimal RF performance. The method is evaluated on the Children's Hospital Boston-Massachusetts Institute of Technology (CHB-MIT) and Seina datasets, which include multichannel EEG data from epileptic patients. Performance metrics such as accuracy, sensitivity, and specificity are employed to evaluate the effectiveness of the seizure detection system.

Results: The proposed ACO-GWO-RF pipeline demonstrated excellent performance on the CHB-MIT dataset, with a mean accuracy of 96.70%, mean sensitivity of 92.66%, and mean specificity of 99.24%, outperforming existing approaches. The mean values of accuracy, sensitivity, and specificity obtained using the Seina dataset are 93.01%, 89.82%, and 96.26%, respectively. These improvements highlight the robustness of the hybrid metaheuristic method in handling complex EEG data.

Conclusions: The hybrid metaheuristic approach effectively optimizes the processing and classification of EEG data for seizure detection. Its strong performance across datasets suggests potential for integration into interactive health applications. Furthermore, its patient-specific adaptability makes it a promising tool for personalized epilepsy diagnosis, treatment, and long-term management.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Acta Epileptologica
Acta Epileptologica Medicine-Neurology (clinical)
CiteScore
2.00
自引率
0.00%
发文量
38
审稿时长
20 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信