海马gaba能神经元CB1受体功能的恢复可拯救亨廷顿病模型的记忆缺陷。

IF 15.2 1区 医学 Q1 NEUROSCIENCES
Nadia Di Franco, Iker Bengoetxea de Tena, Andrea Sanchez-Ruiz, Alba Pereda-Velarde, Ferran Enfedaque, Candela Gónzalez-Arias, Lluis Maria Miquel Rio, Analia Bortolozzi, Rafael Rodriguez-Puertas, Carlos Costas-Insua, Laura Molina-Porcel, Anna Vazquez-Oliver, Andres Ozaita, Manuel Guzmán, Gertrudis Perea, Silvia Ginés
{"title":"海马gaba能神经元CB1受体功能的恢复可拯救亨廷顿病模型的记忆缺陷。","authors":"Nadia Di Franco, Iker Bengoetxea de Tena, Andrea Sanchez-Ruiz, Alba Pereda-Velarde, Ferran Enfedaque, Candela Gónzalez-Arias, Lluis Maria Miquel Rio, Analia Bortolozzi, Rafael Rodriguez-Puertas, Carlos Costas-Insua, Laura Molina-Porcel, Anna Vazquez-Oliver, Andres Ozaita, Manuel Guzmán, Gertrudis Perea, Silvia Ginés","doi":"10.1186/s40035-025-00500-w","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Dysregulation of the endocannabinoid system (eCBS) and the loss of CB1 receptors (CB1R) in the basal ganglia are well-established hallmarks of Huntington's disease (HD). As a result, significant research efforts have focused on targeting the eCBS to alleviate motor disturbances associated with the disease. Beyond its role in motor control, the eCBS is a complex signaling network critically involved in regulating learning and memory. Despite this, the potential involvement of eCBS dysfunction in the cognitive decline characteristic of HD, often manifested well before motor dysfunction, has remained largely unexplored.</p><p><strong>Methods: </strong>CB1R expression in the hippocampus was evaluated in both human HD samples and HD mouse models (R6/1 and Hdh<sup>Q7/Q111</sup> models, including both sexes) using Western blotting, immunohistochemistry, and radioligand binding assays. To restore CB1R function, CB1R agonist WIN-55212-2 was systemically administered, or viral vectors encoding CB1R were locally infused into the hippocampus of HD mice. A multidisciplinary approach combining behavioral, biochemical, electrophysiological, and morphological analyses, was employed to investigate the molecular mechanisms underlying the effects of CB1R activation in the context of HD-related cognitive dysfunction.</p><p><strong>Results: </strong>In both human HD samples and HD mouse models, CB1R protein levels were reduced in the hippocampus, accompanied by structural synaptic alterations and impairment in spatial, recognition and working memory. Moreover, hippocampal depolarization-induced suppression of inhibition was significantly disrupted in R6/1 mice. Administration of WIN-55212-2 successfully restored these synaptic and cognitive deficits. Immunohistochemical analysis revealed that the CB1R decrease was specifically localized to GABAergic interneurons within the hippocampus. Notably, targeted restoration of CB1R expression in these interneurons via viral vector delivery was sufficient to rescue hippocampal-dependent memory deficits in HD mice.</p><p><strong>Conclusion: </strong>This study suggests that impaired CB1R function in hippocampal GABAergic interneurons contributes to memory dysfunction in HD.</p>","PeriodicalId":23269,"journal":{"name":"Translational Neurodegeneration","volume":"14 1","pages":"44"},"PeriodicalIF":15.2000,"publicationDate":"2025-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12376758/pdf/","citationCount":"0","resultStr":"{\"title\":\"Restoration of CB1 receptor function in hippocampal GABAergic neurons rescues memory deficits in Huntington's disease models.\",\"authors\":\"Nadia Di Franco, Iker Bengoetxea de Tena, Andrea Sanchez-Ruiz, Alba Pereda-Velarde, Ferran Enfedaque, Candela Gónzalez-Arias, Lluis Maria Miquel Rio, Analia Bortolozzi, Rafael Rodriguez-Puertas, Carlos Costas-Insua, Laura Molina-Porcel, Anna Vazquez-Oliver, Andres Ozaita, Manuel Guzmán, Gertrudis Perea, Silvia Ginés\",\"doi\":\"10.1186/s40035-025-00500-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Dysregulation of the endocannabinoid system (eCBS) and the loss of CB1 receptors (CB1R) in the basal ganglia are well-established hallmarks of Huntington's disease (HD). As a result, significant research efforts have focused on targeting the eCBS to alleviate motor disturbances associated with the disease. Beyond its role in motor control, the eCBS is a complex signaling network critically involved in regulating learning and memory. Despite this, the potential involvement of eCBS dysfunction in the cognitive decline characteristic of HD, often manifested well before motor dysfunction, has remained largely unexplored.</p><p><strong>Methods: </strong>CB1R expression in the hippocampus was evaluated in both human HD samples and HD mouse models (R6/1 and Hdh<sup>Q7/Q111</sup> models, including both sexes) using Western blotting, immunohistochemistry, and radioligand binding assays. To restore CB1R function, CB1R agonist WIN-55212-2 was systemically administered, or viral vectors encoding CB1R were locally infused into the hippocampus of HD mice. A multidisciplinary approach combining behavioral, biochemical, electrophysiological, and morphological analyses, was employed to investigate the molecular mechanisms underlying the effects of CB1R activation in the context of HD-related cognitive dysfunction.</p><p><strong>Results: </strong>In both human HD samples and HD mouse models, CB1R protein levels were reduced in the hippocampus, accompanied by structural synaptic alterations and impairment in spatial, recognition and working memory. Moreover, hippocampal depolarization-induced suppression of inhibition was significantly disrupted in R6/1 mice. Administration of WIN-55212-2 successfully restored these synaptic and cognitive deficits. Immunohistochemical analysis revealed that the CB1R decrease was specifically localized to GABAergic interneurons within the hippocampus. Notably, targeted restoration of CB1R expression in these interneurons via viral vector delivery was sufficient to rescue hippocampal-dependent memory deficits in HD mice.</p><p><strong>Conclusion: </strong>This study suggests that impaired CB1R function in hippocampal GABAergic interneurons contributes to memory dysfunction in HD.</p>\",\"PeriodicalId\":23269,\"journal\":{\"name\":\"Translational Neurodegeneration\",\"volume\":\"14 1\",\"pages\":\"44\"},\"PeriodicalIF\":15.2000,\"publicationDate\":\"2025-08-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12376758/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Translational Neurodegeneration\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s40035-025-00500-w\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Translational Neurodegeneration","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s40035-025-00500-w","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

背景:内源性大麻素系统(eCBS)的失调和基底神经节中CB1受体(CB1R)的缺失是亨廷顿病(HD)的公认标志。因此,重要的研究工作集中在针对eCBS以减轻与该疾病相关的运动障碍。除了在运动控制方面的作用外,eCBS是一个复杂的信号网络,在调节学习和记忆方面至关重要。尽管如此,eCBS功能障碍在HD的认知能力下降特征中的潜在参与,通常在运动功能障碍之前表现出来,在很大程度上仍未被探索。方法:采用Western blotting、免疫组织化学和放射配体结合法检测人类HD样本和HD小鼠模型(R6/1和HdhQ7/Q111模型,包括两性)海马中CB1R的表达。为了恢复CB1R的功能,系统给药CB1R激动剂WIN-55212-2,或将编码CB1R的病毒载体局部注入HD小鼠海马。采用多学科方法,结合行为、生化、电生理和形态学分析,研究了CB1R激活在hd相关认知功能障碍中的作用的分子机制。结果:在人类HD样本和HD小鼠模型中,海马CB1R蛋白水平降低,伴有结构突触改变和空间、识别和工作记忆损伤。此外,R6/1小鼠海马去极化诱导的抑制被显著破坏。WIN-55212-2成功地恢复了这些突触和认知缺陷。免疫组织化学分析显示,CB1R的减少特异性地定位于海马内gaba能中间神经元。值得注意的是,通过病毒载体靶向恢复这些中间神经元中CB1R的表达足以挽救HD小鼠海马依赖性记忆缺陷。结论:本研究提示海马gaba能中间神经元CB1R功能受损与HD患者记忆功能障碍有关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Restoration of CB1 receptor function in hippocampal GABAergic neurons rescues memory deficits in Huntington's disease models.

Background: Dysregulation of the endocannabinoid system (eCBS) and the loss of CB1 receptors (CB1R) in the basal ganglia are well-established hallmarks of Huntington's disease (HD). As a result, significant research efforts have focused on targeting the eCBS to alleviate motor disturbances associated with the disease. Beyond its role in motor control, the eCBS is a complex signaling network critically involved in regulating learning and memory. Despite this, the potential involvement of eCBS dysfunction in the cognitive decline characteristic of HD, often manifested well before motor dysfunction, has remained largely unexplored.

Methods: CB1R expression in the hippocampus was evaluated in both human HD samples and HD mouse models (R6/1 and HdhQ7/Q111 models, including both sexes) using Western blotting, immunohistochemistry, and radioligand binding assays. To restore CB1R function, CB1R agonist WIN-55212-2 was systemically administered, or viral vectors encoding CB1R were locally infused into the hippocampus of HD mice. A multidisciplinary approach combining behavioral, biochemical, electrophysiological, and morphological analyses, was employed to investigate the molecular mechanisms underlying the effects of CB1R activation in the context of HD-related cognitive dysfunction.

Results: In both human HD samples and HD mouse models, CB1R protein levels were reduced in the hippocampus, accompanied by structural synaptic alterations and impairment in spatial, recognition and working memory. Moreover, hippocampal depolarization-induced suppression of inhibition was significantly disrupted in R6/1 mice. Administration of WIN-55212-2 successfully restored these synaptic and cognitive deficits. Immunohistochemical analysis revealed that the CB1R decrease was specifically localized to GABAergic interneurons within the hippocampus. Notably, targeted restoration of CB1R expression in these interneurons via viral vector delivery was sufficient to rescue hippocampal-dependent memory deficits in HD mice.

Conclusion: This study suggests that impaired CB1R function in hippocampal GABAergic interneurons contributes to memory dysfunction in HD.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Translational Neurodegeneration
Translational Neurodegeneration Neuroscience-Cognitive Neuroscience
CiteScore
19.50
自引率
0.80%
发文量
44
审稿时长
10 weeks
期刊介绍: Translational Neurodegeneration, an open-access, peer-reviewed journal, addresses all aspects of neurodegenerative diseases. It serves as a prominent platform for research, therapeutics, and education, fostering discussions and insights across basic, translational, and clinical research domains. Covering Parkinson's disease, Alzheimer's disease, and other neurodegenerative conditions, it welcomes contributions on epidemiology, pathogenesis, diagnosis, prevention, drug development, rehabilitation, and drug delivery. Scientists, clinicians, and physician-scientists are encouraged to share their work in this specialized journal tailored to their fields.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信