光学相干断层扫描评价未经皮冠状动脉介入治疗的冠状动脉斑块的不良心血管事件。PREDICT-AI风险模型。

IF 2.8 Q2 CARDIAC & CARDIOVASCULAR SYSTEMS
Francesco Bruno, Maddalena Immobile Molaro, Michela Sperti, Francesco Bianchini, Miao Chu, Camilla Cardaci, Wojciech Wańha, Pawel Gasior, Simone Zecchino, Marco Pavani, Rocco Vergallo, Simone Biscaglia, Enrico Cerrato, Gioel Gabrio Secco, Marco Mennuni, Massimo Mancone, Ovidio De Filippo, Alessio Mattesini, Paolo Canova, Alberto Boi, Fabrizio Ugo, Roberto Scarsini, Francesco Costa, Enrico Fabris, Gianluca Campo, Wojtek Wojakowski, Umberto Morbiducci, Marco Deriu, Shengxian Tu, Raffaele Piccolo, Fabrizio D'Ascenzo, Claudio Chiastra, Francesco Burzotta
{"title":"光学相干断层扫描评价未经皮冠状动脉介入治疗的冠状动脉斑块的不良心血管事件。PREDICT-AI风险模型。","authors":"Francesco Bruno, Maddalena Immobile Molaro, Michela Sperti, Francesco Bianchini, Miao Chu, Camilla Cardaci, Wojciech Wańha, Pawel Gasior, Simone Zecchino, Marco Pavani, Rocco Vergallo, Simone Biscaglia, Enrico Cerrato, Gioel Gabrio Secco, Marco Mennuni, Massimo Mancone, Ovidio De Filippo, Alessio Mattesini, Paolo Canova, Alberto Boi, Fabrizio Ugo, Roberto Scarsini, Francesco Costa, Enrico Fabris, Gianluca Campo, Wojtek Wojakowski, Umberto Morbiducci, Marco Deriu, Shengxian Tu, Raffaele Piccolo, Fabrizio D'Ascenzo, Claudio Chiastra, Francesco Burzotta","doi":"10.1136/openhrt-2025-003389","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Most acute coronary syndromes (ACS) originate from coronary plaques that are angiographically mild and not flow limiting. These lesions, often characterised by thin-cap fibroatheroma, large lipid cores and macrophage infiltration, are termed 'vulnerable plaques' and are associated with a heightened risk of future major adverse cardiovascular events (MACE). However, current imaging modalities lack robust predictive power, and treatment strategies for such plaques remain controversial.</p><p><strong>Methods and analysis: </strong>The PREDICT-AI study aims to develop and externally validate a machine learning (ML)-based risk score that integrates optical coherence tomography (OCT) plaque features and patient-level clinical data to predict the natural history of non-flow-limiting coronary lesions not treated with percutaneous coronary intervention (PCI). This is a multicentre, prospective, observational study enrolling 500 patients with recent ACS who undergo comprehensive three-vessel OCT imaging. Lesions not treated with PCI will be characterised using artificial intelligence (AI)-based plaque analysis (OctPlus software), including quantification of fibrous cap thickness, lipid arc, macrophage presence and other microstructural features. A three-step ML pipeline will be used to derive and validate a risk score predicting MACE at follow-up. Outcomes will be adjudicated blinded to OCT findings. The primary endpoint is MACE (composite of cardiovascular death, myocardial infarction, urgent revascularisation or target vessel revascularisation). Event prediction will be assessed at both the patient level and plaque level.</p><p><strong>Ethics and dissemination: </strong>The PREDICT-AI study will generate a clinically applicable, AI-driven risk stratification tool based on high-resolution intracoronary imaging. By identifying high-risk, non-obstructive coronary plaques, this model may enhance personalised management strategies and support the transition towards precision medicine in coronary artery disease.</p>","PeriodicalId":19505,"journal":{"name":"Open Heart","volume":"12 2","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12382552/pdf/","citationCount":"0","resultStr":"{\"title\":\"Adverse cardiovascular events in coronary Plaques not undeRgoing pErcutaneous coronary intervention evaluateD with optIcal Coherence Tomography. The PREDICT-AI risk model.\",\"authors\":\"Francesco Bruno, Maddalena Immobile Molaro, Michela Sperti, Francesco Bianchini, Miao Chu, Camilla Cardaci, Wojciech Wańha, Pawel Gasior, Simone Zecchino, Marco Pavani, Rocco Vergallo, Simone Biscaglia, Enrico Cerrato, Gioel Gabrio Secco, Marco Mennuni, Massimo Mancone, Ovidio De Filippo, Alessio Mattesini, Paolo Canova, Alberto Boi, Fabrizio Ugo, Roberto Scarsini, Francesco Costa, Enrico Fabris, Gianluca Campo, Wojtek Wojakowski, Umberto Morbiducci, Marco Deriu, Shengxian Tu, Raffaele Piccolo, Fabrizio D'Ascenzo, Claudio Chiastra, Francesco Burzotta\",\"doi\":\"10.1136/openhrt-2025-003389\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Introduction: </strong>Most acute coronary syndromes (ACS) originate from coronary plaques that are angiographically mild and not flow limiting. These lesions, often characterised by thin-cap fibroatheroma, large lipid cores and macrophage infiltration, are termed 'vulnerable plaques' and are associated with a heightened risk of future major adverse cardiovascular events (MACE). However, current imaging modalities lack robust predictive power, and treatment strategies for such plaques remain controversial.</p><p><strong>Methods and analysis: </strong>The PREDICT-AI study aims to develop and externally validate a machine learning (ML)-based risk score that integrates optical coherence tomography (OCT) plaque features and patient-level clinical data to predict the natural history of non-flow-limiting coronary lesions not treated with percutaneous coronary intervention (PCI). This is a multicentre, prospective, observational study enrolling 500 patients with recent ACS who undergo comprehensive three-vessel OCT imaging. Lesions not treated with PCI will be characterised using artificial intelligence (AI)-based plaque analysis (OctPlus software), including quantification of fibrous cap thickness, lipid arc, macrophage presence and other microstructural features. A three-step ML pipeline will be used to derive and validate a risk score predicting MACE at follow-up. Outcomes will be adjudicated blinded to OCT findings. The primary endpoint is MACE (composite of cardiovascular death, myocardial infarction, urgent revascularisation or target vessel revascularisation). Event prediction will be assessed at both the patient level and plaque level.</p><p><strong>Ethics and dissemination: </strong>The PREDICT-AI study will generate a clinically applicable, AI-driven risk stratification tool based on high-resolution intracoronary imaging. By identifying high-risk, non-obstructive coronary plaques, this model may enhance personalised management strategies and support the transition towards precision medicine in coronary artery disease.</p>\",\"PeriodicalId\":19505,\"journal\":{\"name\":\"Open Heart\",\"volume\":\"12 2\",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12382552/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Open Heart\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1136/openhrt-2025-003389\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CARDIAC & CARDIOVASCULAR SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Open Heart","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1136/openhrt-2025-003389","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

简介:大多数急性冠状动脉综合征(ACS)起源于冠状动脉斑块,血管造影轻度且不限制血流。这些病变通常以薄帽纤维粥样硬化、大脂质核心和巨噬细胞浸润为特征,被称为“易损斑块”,并与未来主要不良心血管事件(MACE)的高风险相关。然而,目前的成像方式缺乏强大的预测能力,对此类斑块的治疗策略仍然存在争议。方法和分析:predict - ai研究旨在开发并外部验证基于机器学习(ML)的风险评分,该评分整合了光学相干断层扫描(OCT)斑块特征和患者层面的临床数据,以预测未经经皮冠状动脉介入治疗(PCI)的非血流限制性冠状动脉病变的自然历史。这是一项多中心、前瞻性、观察性研究,纳入了500名近期ACS患者,他们接受了全面的三血管OCT成像。未接受PCI治疗的病变将使用基于人工智能(AI)的斑块分析(OctPlus软件)进行表征,包括定量纤维帽厚度、脂质弧、巨噬细胞存在和其他微结构特征。一个三步机器学习流程将用于推导和验证预测随访时MACE的风险评分。结果将不受OCT结果的影响。主要终点是MACE(心血管死亡、心肌梗死、紧急血管重建术或靶血管重建术的组合)。事件预测将在患者水平和斑块水平进行评估。伦理和传播:PREDICT-AI研究将产生一种基于高分辨率冠状动脉内成像的临床应用的、人工智能驱动的风险分层工具。通过识别高风险、非阻塞性冠状动脉斑块,该模型可以增强个性化管理策略,并支持冠状动脉疾病向精准医学的过渡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Adverse cardiovascular events in coronary Plaques not undeRgoing pErcutaneous coronary intervention evaluateD with optIcal Coherence Tomography. The PREDICT-AI risk model.

Adverse cardiovascular events in coronary Plaques not undeRgoing pErcutaneous coronary intervention evaluateD with optIcal Coherence Tomography. The PREDICT-AI risk model.

Adverse cardiovascular events in coronary Plaques not undeRgoing pErcutaneous coronary intervention evaluateD with optIcal Coherence Tomography. The PREDICT-AI risk model.

Adverse cardiovascular events in coronary Plaques not undeRgoing pErcutaneous coronary intervention evaluateD with optIcal Coherence Tomography. The PREDICT-AI risk model.

Introduction: Most acute coronary syndromes (ACS) originate from coronary plaques that are angiographically mild and not flow limiting. These lesions, often characterised by thin-cap fibroatheroma, large lipid cores and macrophage infiltration, are termed 'vulnerable plaques' and are associated with a heightened risk of future major adverse cardiovascular events (MACE). However, current imaging modalities lack robust predictive power, and treatment strategies for such plaques remain controversial.

Methods and analysis: The PREDICT-AI study aims to develop and externally validate a machine learning (ML)-based risk score that integrates optical coherence tomography (OCT) plaque features and patient-level clinical data to predict the natural history of non-flow-limiting coronary lesions not treated with percutaneous coronary intervention (PCI). This is a multicentre, prospective, observational study enrolling 500 patients with recent ACS who undergo comprehensive three-vessel OCT imaging. Lesions not treated with PCI will be characterised using artificial intelligence (AI)-based plaque analysis (OctPlus software), including quantification of fibrous cap thickness, lipid arc, macrophage presence and other microstructural features. A three-step ML pipeline will be used to derive and validate a risk score predicting MACE at follow-up. Outcomes will be adjudicated blinded to OCT findings. The primary endpoint is MACE (composite of cardiovascular death, myocardial infarction, urgent revascularisation or target vessel revascularisation). Event prediction will be assessed at both the patient level and plaque level.

Ethics and dissemination: The PREDICT-AI study will generate a clinically applicable, AI-driven risk stratification tool based on high-resolution intracoronary imaging. By identifying high-risk, non-obstructive coronary plaques, this model may enhance personalised management strategies and support the transition towards precision medicine in coronary artery disease.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Open Heart
Open Heart CARDIAC & CARDIOVASCULAR SYSTEMS-
CiteScore
4.60
自引率
3.70%
发文量
145
审稿时长
20 weeks
期刊介绍: Open Heart is an online-only, open access cardiology journal that aims to be “open” in many ways: open access (free access for all readers), open peer review (unblinded peer review) and open data (data sharing is encouraged). The goal is to ensure maximum transparency and maximum impact on research progress and patient care. The journal is dedicated to publishing high quality, peer reviewed medical research in all disciplines and therapeutic areas of cardiovascular medicine. Research is published across all study phases and designs, from study protocols to phase I trials to meta-analyses, including small or specialist studies. Opinionated discussions on controversial topics are welcomed. Open Heart aims to operate a fast submission and review process with continuous publication online, to ensure timely, up-to-date research is available worldwide. The journal adheres to a rigorous and transparent peer review process, and all articles go through a statistical assessment to ensure robustness of the analyses. Open Heart is an official journal of the British Cardiovascular Society.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信