仅基于h&e染色玻片的ai驱动的WHO 2021胶质瘤分类。

IF 13.4 1区 医学 Q1 CLINICAL NEUROLOGY
Shubham Innani, W Robert Bell, MacLean P Nasrallah, Bhakti Baheti, Spyridon Bakas
{"title":"仅基于h&e染色玻片的ai驱动的WHO 2021胶质瘤分类。","authors":"Shubham Innani, W Robert Bell, MacLean P Nasrallah, Bhakti Baheti, Spyridon Bakas","doi":"10.1093/neuonc/noaf189","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The WHO 2021 classification criteria for adult diffuse glioma integrate histology with molecular profiling for conclusive diagnosis. Since molecular profiling can be expensive and time-consuming, often necessitating outsourcing or leading to the 'not otherwise specified (NOS) label', this study develops an AI-driven WHO 2021 classification of gliomas solely from H&E whole-slide images (WSIs).</p><p><strong>Methods: </strong>Our pipeline is based on a multi-institutional dataset reclassified per WHO 2021 guidelines. This dataset includes a) Primarily US based TCGA-GBM/TCGA-LGG (n=1,320) for model training, independently evaluated on two hold-out sets, b) Austria-based EBRAINS (n= 794) c) India-based IPD-Brain (n=304). Each WSI undergoes pre-processing followed by quantitative benchmarking across i) eight pathology foundation models, ii) nine aggregation methods, and (iii) 15 combinations of magnification levels through a late fusion approach. Model interpretability conducted through heatmaps highlights distinct, identifiable morphology features.</p><p><strong>Results: </strong>Our best-performing combination of FM, AM, and multi-magnification achieved an AUC of 97.95% on the training cohort, 96.30% on EBRAINS (set 1), and 92.61% on IPD (set 2). The results yield the following key insights: (1) domain-specific FMs outperform ImageNet-based models, (2) AMs while theoretically promising yield larger performance improvements when used with ImageNet based feature extractor rather than FMs, and (3) Fusion of multiple magnifications adds value in performance.</p><p><strong>Conclusion: </strong>Determining glioma diagnosis directly from H&E slides can obviate the need for molecular profiling, expedite conclusive diagnosis, and, hence, clinical decision-making. These findings motivate the development of advanced domain-relevant foundation models and the design of more adaptable slide-level aggregation techniques.</p>","PeriodicalId":19377,"journal":{"name":"Neuro-oncology","volume":" ","pages":""},"PeriodicalIF":13.4000,"publicationDate":"2025-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"AI-driven WHO 2021 classification of gliomas based only on H&E-stained slides.\",\"authors\":\"Shubham Innani, W Robert Bell, MacLean P Nasrallah, Bhakti Baheti, Spyridon Bakas\",\"doi\":\"10.1093/neuonc/noaf189\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>The WHO 2021 classification criteria for adult diffuse glioma integrate histology with molecular profiling for conclusive diagnosis. Since molecular profiling can be expensive and time-consuming, often necessitating outsourcing or leading to the 'not otherwise specified (NOS) label', this study develops an AI-driven WHO 2021 classification of gliomas solely from H&E whole-slide images (WSIs).</p><p><strong>Methods: </strong>Our pipeline is based on a multi-institutional dataset reclassified per WHO 2021 guidelines. This dataset includes a) Primarily US based TCGA-GBM/TCGA-LGG (n=1,320) for model training, independently evaluated on two hold-out sets, b) Austria-based EBRAINS (n= 794) c) India-based IPD-Brain (n=304). Each WSI undergoes pre-processing followed by quantitative benchmarking across i) eight pathology foundation models, ii) nine aggregation methods, and (iii) 15 combinations of magnification levels through a late fusion approach. Model interpretability conducted through heatmaps highlights distinct, identifiable morphology features.</p><p><strong>Results: </strong>Our best-performing combination of FM, AM, and multi-magnification achieved an AUC of 97.95% on the training cohort, 96.30% on EBRAINS (set 1), and 92.61% on IPD (set 2). The results yield the following key insights: (1) domain-specific FMs outperform ImageNet-based models, (2) AMs while theoretically promising yield larger performance improvements when used with ImageNet based feature extractor rather than FMs, and (3) Fusion of multiple magnifications adds value in performance.</p><p><strong>Conclusion: </strong>Determining glioma diagnosis directly from H&E slides can obviate the need for molecular profiling, expedite conclusive diagnosis, and, hence, clinical decision-making. These findings motivate the development of advanced domain-relevant foundation models and the design of more adaptable slide-level aggregation techniques.</p>\",\"PeriodicalId\":19377,\"journal\":{\"name\":\"Neuro-oncology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":13.4000,\"publicationDate\":\"2025-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neuro-oncology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1093/neuonc/noaf189\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CLINICAL NEUROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuro-oncology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/neuonc/noaf189","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0

摘要

背景:WHO 2021成人弥漫性胶质瘤的分类标准将组织学和分子谱结合起来进行结论性诊断。由于分子分析可能昂贵且耗时,通常需要外包或导致“未指定(NOS)标签”,因此本研究开发了人工智能驱动的WHO 2021分类,仅从H&E全片图像(wsi)中对胶质瘤进行分类。方法:我们的产品线基于根据WHO 2021指南重新分类的多机构数据集。该数据集包括a)主要基于美国的TCGA-GBM/TCGA-LGG (n= 1320)用于模型训练,在两个保留集上独立评估,b)基于奥地利的EBRAINS (n= 794) c)基于印度的IPD-Brain (n=304)。每个WSI经过预处理,然后通过i) 8种病理基础模型,ii) 9种聚合方法,以及(iii)通过后期融合方法的15种放大水平组合进行定量基准测试。通过热图进行的模型可解释性突出了不同的、可识别的形态学特征。结果:FM、AM和倍数放大的最佳组合在训练队列上的AUC为97.95%,在EBRAINS (set 1)上为96.30%,在IPD (set 2)上为92.61%。结果产生了以下关键见解:(1)特定领域的FMs优于基于ImageNet的模型;(2)与基于ImageNet的特征提取器而不是FMs一起使用时,理论上有望产生更大的性能改进;(3)多个放大倍数的融合增加了性能的价值。结论:直接从H&E玻片确定胶质瘤的诊断可以避免分子谱分析的需要,加快结论性诊断,从而加快临床决策。这些发现激发了先进的领域相关基础模型的发展和设计更具适应性的滑动级聚合技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
AI-driven WHO 2021 classification of gliomas based only on H&E-stained slides.

Background: The WHO 2021 classification criteria for adult diffuse glioma integrate histology with molecular profiling for conclusive diagnosis. Since molecular profiling can be expensive and time-consuming, often necessitating outsourcing or leading to the 'not otherwise specified (NOS) label', this study develops an AI-driven WHO 2021 classification of gliomas solely from H&E whole-slide images (WSIs).

Methods: Our pipeline is based on a multi-institutional dataset reclassified per WHO 2021 guidelines. This dataset includes a) Primarily US based TCGA-GBM/TCGA-LGG (n=1,320) for model training, independently evaluated on two hold-out sets, b) Austria-based EBRAINS (n= 794) c) India-based IPD-Brain (n=304). Each WSI undergoes pre-processing followed by quantitative benchmarking across i) eight pathology foundation models, ii) nine aggregation methods, and (iii) 15 combinations of magnification levels through a late fusion approach. Model interpretability conducted through heatmaps highlights distinct, identifiable morphology features.

Results: Our best-performing combination of FM, AM, and multi-magnification achieved an AUC of 97.95% on the training cohort, 96.30% on EBRAINS (set 1), and 92.61% on IPD (set 2). The results yield the following key insights: (1) domain-specific FMs outperform ImageNet-based models, (2) AMs while theoretically promising yield larger performance improvements when used with ImageNet based feature extractor rather than FMs, and (3) Fusion of multiple magnifications adds value in performance.

Conclusion: Determining glioma diagnosis directly from H&E slides can obviate the need for molecular profiling, expedite conclusive diagnosis, and, hence, clinical decision-making. These findings motivate the development of advanced domain-relevant foundation models and the design of more adaptable slide-level aggregation techniques.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Neuro-oncology
Neuro-oncology 医学-临床神经学
CiteScore
27.20
自引率
6.30%
发文量
1434
审稿时长
3-8 weeks
期刊介绍: Neuro-Oncology, the official journal of the Society for Neuro-Oncology, has been published monthly since January 2010. Affiliated with the Japan Society for Neuro-Oncology and the European Association of Neuro-Oncology, it is a global leader in the field. The journal is committed to swiftly disseminating high-quality information across all areas of neuro-oncology. It features peer-reviewed articles, reviews, symposia on various topics, abstracts from annual meetings, and updates from neuro-oncology societies worldwide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信