系统生物学通用微分方程的现状及有待解决的问题。

IF 3.5 2区 生物学 Q1 MATHEMATICAL & COMPUTATIONAL BIOLOGY
Maren Philipps, Nina Schmid, Jan Hasenauer
{"title":"系统生物学通用微分方程的现状及有待解决的问题。","authors":"Maren Philipps, Nina Schmid, Jan Hasenauer","doi":"10.1038/s41540-025-00550-w","DOIUrl":null,"url":null,"abstract":"<p><p>Universal Differential Equations (UDEs) combine mechanistic differential equations with data-driven artificial neural networks, forming a flexible framework for modelling complex biological systems. This hybrid approach leverages prior knowledge and data to uncover unknown processes and deliver accurate predictions. However, UDEs face challenges in efficient and reliable training due to stiff dynamics and noisy, sparse data common in biology, and in ensuring the interpretability of the parameters of the mechanistic model. We investigate these challenges and evaluate UDE performance on realistic biological scenarios, providing a systematic training pipeline. Our results demonstrate the versatility of UDEs in systems biology and reveal that noise and limited data significantly degrade performance, but regularisation can improve accuracy and interpretability. By addressing key challenges and offering practical solutions, this work advances UDE methodology and underscores its potential in tackling complex problems in systems biology.</p>","PeriodicalId":19345,"journal":{"name":"NPJ Systems Biology and Applications","volume":"11 1","pages":"101"},"PeriodicalIF":3.5000,"publicationDate":"2025-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12398592/pdf/","citationCount":"0","resultStr":"{\"title\":\"Current state and open problems in universal differential equations for systems biology.\",\"authors\":\"Maren Philipps, Nina Schmid, Jan Hasenauer\",\"doi\":\"10.1038/s41540-025-00550-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Universal Differential Equations (UDEs) combine mechanistic differential equations with data-driven artificial neural networks, forming a flexible framework for modelling complex biological systems. This hybrid approach leverages prior knowledge and data to uncover unknown processes and deliver accurate predictions. However, UDEs face challenges in efficient and reliable training due to stiff dynamics and noisy, sparse data common in biology, and in ensuring the interpretability of the parameters of the mechanistic model. We investigate these challenges and evaluate UDE performance on realistic biological scenarios, providing a systematic training pipeline. Our results demonstrate the versatility of UDEs in systems biology and reveal that noise and limited data significantly degrade performance, but regularisation can improve accuracy and interpretability. By addressing key challenges and offering practical solutions, this work advances UDE methodology and underscores its potential in tackling complex problems in systems biology.</p>\",\"PeriodicalId\":19345,\"journal\":{\"name\":\"NPJ Systems Biology and Applications\",\"volume\":\"11 1\",\"pages\":\"101\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12398592/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"NPJ Systems Biology and Applications\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1038/s41540-025-00550-w\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"NPJ Systems Biology and Applications","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41540-025-00550-w","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

通用微分方程将机械微分方程与数据驱动的人工神经网络相结合,形成了一个灵活的框架,用于复杂生物系统的建模。这种混合方法利用先前的知识和数据来发现未知的过程并提供准确的预测。然而,由于生物学中常见的刚性动力学和嘈杂、稀疏的数据,以及确保机制模型参数的可解释性,在高效可靠的训练方面,人工神经网络面临着挑战。我们研究了这些挑战,并在现实的生物场景中评估了UDE的表现,提供了一个系统的培训管道。我们的研究结果证明了在系统生物学中的多功能性,并揭示了噪声和有限的数据会显著降低性能,但正则化可以提高准确性和可解释性。通过解决关键挑战和提供实用的解决方案,这项工作推进了UDE方法,并强调了其在解决系统生物学复杂问题方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Current state and open problems in universal differential equations for systems biology.

Universal Differential Equations (UDEs) combine mechanistic differential equations with data-driven artificial neural networks, forming a flexible framework for modelling complex biological systems. This hybrid approach leverages prior knowledge and data to uncover unknown processes and deliver accurate predictions. However, UDEs face challenges in efficient and reliable training due to stiff dynamics and noisy, sparse data common in biology, and in ensuring the interpretability of the parameters of the mechanistic model. We investigate these challenges and evaluate UDE performance on realistic biological scenarios, providing a systematic training pipeline. Our results demonstrate the versatility of UDEs in systems biology and reveal that noise and limited data significantly degrade performance, but regularisation can improve accuracy and interpretability. By addressing key challenges and offering practical solutions, this work advances UDE methodology and underscores its potential in tackling complex problems in systems biology.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
NPJ Systems Biology and Applications
NPJ Systems Biology and Applications Mathematics-Applied Mathematics
CiteScore
5.80
自引率
0.00%
发文量
46
审稿时长
8 weeks
期刊介绍: npj Systems Biology and Applications is an online Open Access journal dedicated to publishing the premier research that takes a systems-oriented approach. The journal aims to provide a forum for the presentation of articles that help define this nascent field, as well as those that apply the advances to wider fields. We encourage studies that integrate, or aid the integration of, data, analyses and insight from molecules to organisms and broader systems. Important areas of interest include not only fundamental biological systems and drug discovery, but also applications to health, medical practice and implementation, big data, biotechnology, food science, human behaviour, broader biological systems and industrial applications of systems biology. We encourage all approaches, including network biology, application of control theory to biological systems, computational modelling and analysis, comprehensive and/or high-content measurements, theoretical, analytical and computational studies of system-level properties of biological systems and computational/software/data platforms enabling such studies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信