Einar Bjarki Gunnarsson, Benedikt Vilji Magnússon, Jasmine Foo
{"title":"药物诱导可塑性下抗癌治疗的最佳剂量。","authors":"Einar Bjarki Gunnarsson, Benedikt Vilji Magnússon, Jasmine Foo","doi":"10.1038/s41540-025-00571-5","DOIUrl":null,"url":null,"abstract":"<p><p>While cancer has traditionally been considered a genetic disease, mounting evidence indicates an important role for non-genetic (epigenetic) mechanisms. Common anti-cancer drugs have recently been observed to induce the adoption of non-genetic drug-tolerant cell states, thereby accelerating the evolution of drug resistance. This confounds conventional high-dose treatment strategies aimed at maximal tumor reduction, since high doses can simultaneously promote non-genetic resistance. In this work, we study optimal dosing of anti-cancer treatment under drug-induced cell plasticity. We show that the optimal dosing strategy steers the tumor to a fixed equilibrium composition between sensitive and tolerant cells, while precisely balancing the trade-off between cell kill and tolerance induction. The optimal equilibrium strategy ranges from applying a low dose continuously to applying the maximum dose intermittently, depending on the dynamics of tolerance induction. We finally discuss how our approach can be integrated with in vitro data to derive patient-specific treatment insights.</p>","PeriodicalId":19345,"journal":{"name":"NPJ Systems Biology and Applications","volume":"11 1","pages":"98"},"PeriodicalIF":3.5000,"publicationDate":"2025-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12375710/pdf/","citationCount":"0","resultStr":"{\"title\":\"Optimal dosing of anti-cancer treatment under drug-induced plasticity.\",\"authors\":\"Einar Bjarki Gunnarsson, Benedikt Vilji Magnússon, Jasmine Foo\",\"doi\":\"10.1038/s41540-025-00571-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>While cancer has traditionally been considered a genetic disease, mounting evidence indicates an important role for non-genetic (epigenetic) mechanisms. Common anti-cancer drugs have recently been observed to induce the adoption of non-genetic drug-tolerant cell states, thereby accelerating the evolution of drug resistance. This confounds conventional high-dose treatment strategies aimed at maximal tumor reduction, since high doses can simultaneously promote non-genetic resistance. In this work, we study optimal dosing of anti-cancer treatment under drug-induced cell plasticity. We show that the optimal dosing strategy steers the tumor to a fixed equilibrium composition between sensitive and tolerant cells, while precisely balancing the trade-off between cell kill and tolerance induction. The optimal equilibrium strategy ranges from applying a low dose continuously to applying the maximum dose intermittently, depending on the dynamics of tolerance induction. We finally discuss how our approach can be integrated with in vitro data to derive patient-specific treatment insights.</p>\",\"PeriodicalId\":19345,\"journal\":{\"name\":\"NPJ Systems Biology and Applications\",\"volume\":\"11 1\",\"pages\":\"98\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-08-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12375710/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"NPJ Systems Biology and Applications\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1038/s41540-025-00571-5\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"NPJ Systems Biology and Applications","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41540-025-00571-5","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
Optimal dosing of anti-cancer treatment under drug-induced plasticity.
While cancer has traditionally been considered a genetic disease, mounting evidence indicates an important role for non-genetic (epigenetic) mechanisms. Common anti-cancer drugs have recently been observed to induce the adoption of non-genetic drug-tolerant cell states, thereby accelerating the evolution of drug resistance. This confounds conventional high-dose treatment strategies aimed at maximal tumor reduction, since high doses can simultaneously promote non-genetic resistance. In this work, we study optimal dosing of anti-cancer treatment under drug-induced cell plasticity. We show that the optimal dosing strategy steers the tumor to a fixed equilibrium composition between sensitive and tolerant cells, while precisely balancing the trade-off between cell kill and tolerance induction. The optimal equilibrium strategy ranges from applying a low dose continuously to applying the maximum dose intermittently, depending on the dynamics of tolerance induction. We finally discuss how our approach can be integrated with in vitro data to derive patient-specific treatment insights.
期刊介绍:
npj Systems Biology and Applications is an online Open Access journal dedicated to publishing the premier research that takes a systems-oriented approach. The journal aims to provide a forum for the presentation of articles that help define this nascent field, as well as those that apply the advances to wider fields. We encourage studies that integrate, or aid the integration of, data, analyses and insight from molecules to organisms and broader systems. Important areas of interest include not only fundamental biological systems and drug discovery, but also applications to health, medical practice and implementation, big data, biotechnology, food science, human behaviour, broader biological systems and industrial applications of systems biology.
We encourage all approaches, including network biology, application of control theory to biological systems, computational modelling and analysis, comprehensive and/or high-content measurements, theoretical, analytical and computational studies of system-level properties of biological systems and computational/software/data platforms enabling such studies.